Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 14(13-14): 1630-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24829208

RESUMEN

The sensor kinase/response regulator system KdpD/KdpE of Escherichia coli regulates the expression of the kdpFABC operon, encoding the high-affinity KdpFABC potassium (K(+) )-transport complex. Additionally, it has been suggested that the kdpDE operon itself is subjected to autoregulation by its gene products KdpD and KdpE. However, since kdpFABC and kdpDE expression has mainly been studied on the transcriptional level, accurate information on absolute amounts and the stoichiometric subunit composition of KdpFABC and KdpD/KdpE under K(+) -limiting and K(+) -nonlimiting growth conditions are lacking. In this study, we used highly sensitive mass spectrometric methods to quantify the amount of subunits of the Kdp(F)ABC complex and KdpD/KdpE. Data-dependent shotgun MS was used to assess protein coverage and accessible peptides. Absolute amounts of Kdp(F)ABC and KdpD/KdpE were quantified by targeted MRM analysis in the presence of corresponding heavy labeled standard peptides. Baseline synthesis of Kdp(F)ABC and KdpD/KdpE was found to be in the attomolar range under K(+) -nonlimiting conditions. Under K(+) -limitation, synthesis of Kdp(F)ABC (KdpA:KdpB:KdpC ratio of 1:1:1) was amplified more than 100-fold, whereas only a tenfold amplification of KdpD/KdpE (KdpD:KdpE ratio of 1:4) was observed. The results obtained provide a solid basis for follow-up studies on the dynamic regulation of the Kdp system.


Asunto(s)
Adenosina Trifosfatasas/análisis , Proteínas de Transporte de Catión/análisis , Proteínas de Escherichia coli/análisis , Escherichia coli/química , Proteínas Quinasas/análisis , Transactivadores/análisis , Secuencia de Aminoácidos , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Subunidades de Proteína/análisis , Proteómica/métodos
2.
Mol Microbiol ; 88(6): 1194-204, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23651428

RESUMEN

The Kdp system of Escherichia coli is composed of the high-affinity K(+) transporter KdpFABC and the two regulatory proteins KdpD (sensor kinase) and KdpE (response regulator), which constitute a typical two-component system. The kdpFABC operon is induced under K(+) -limiting conditions and, to a lesser extent, under high osmolality in the medium. In search for the stimulus sensed by KdpD, we studied the inhibitory effect of extracellular K(+) on the Kdp system at pH 6.0, which is masked by unspecific K(+) transport at higher pH values. Based on KdpD derivatives carrying single aspartate replacements in the periplasmic loops which are part of the input domain, we concluded that the inhibition of the Kdp system at extracellular K(+) concentrations above 5 mM is mediated via KdpD/KdpE and not due to inhibition of the K(+) -transporting KdpFABC complex. Furthermore, time-course analyses of kdpFABC expression revealed that a decline in the extracellular K(+) concentration efficiently stimulates KdpD/KdpE-mediated signal transduction. In this report we provide evidence that the extracellular K(+) concentration serves as one of the stimuli sensed by KdpD.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Medios de Cultivo/química , Análisis Mutacional de ADN , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Quinasas/genética , Transactivadores/metabolismo
3.
Chemistry ; 18(2): 478-87, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22147615

RESUMEN

The efrapeptin family of peptide antibiotics produced by the fungus Tolypocladium niveum, and the neo-efrapeptins from the fungus Geotrichum candidumare inhibitors of F(1)-ATPase with promising antitumor, antimalaria, and insecticidal activity. They are rich in C(α)-dialkyl amino acids (Aib, Iva, Acc) and contain one ß-alanine and several pipecolic acid residues. The C-terminus bears an unusual heterocyclic cationic cap. The efrapeptins C-G and three analogues of efrapeptin C were synthesized using α-azido carboxylic acids as masked amino acid derivatives. All compounds display inhibitory activity toward F(1)-ATPase. The conformation in solution of the peptides was investigated with electronic CD spectroscopy, FT-IR spectroscopy, and VCD spectroscopy. All efrapeptins and most efrapeptin analogues were shown to adopt helical conformations in solution. In the case of efrapeptin C, VCD spectra proved that a 3(10)-helix prevails. In addition, efrapeptin C was conformationally studied in detail with NMR and molecular modeling. Besides NOE distance restraints, residual dipolar couplings (RDC) observed upon partial alignment with stretched PDMS gels were used for the conformational analysis and confirmed the 3(10)-helical conformation.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Hypocreales/química , Péptidos/química , Péptidos/farmacología , Adenosina Trifosfatasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Antibacterianos/síntesis química , Dicroismo Circular , Escherichia coli/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/síntesis química , Estructura Secundaria de Proteína
4.
Biochim Biophys Acta ; 1798(1): 32-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19850005

RESUMEN

The membrane-bound sensor kinase KdpD and the cytoplasmic response regulator KdpE regulate the expression of the kdpFABC operon coding for the high affinity potassium uptake system KdpFABC in Escherichia coli. The signal transduction cascade of this two component system is activated under K(+)-limiting conditions in the medium, but is less sensitive to high osmolality. In order to test whether K(+) limitation affects membrane phospholipid composition and whether this change affects kdpFABC expression, we analysed the phospholipid composition of E. coli under these conditions. Our measurements revealed that there is an increase in the cardiolipin (CL) content during the exponential growth phase at the expense of the zwitterionic phospholipid phosphatidylethanolamine. The higher anionic phospholipid content occurs along with an increase of transcriptional activity of the cls gene coding for CL synthase. Furthermore, in vivo studies with E. coli derivatives carrying mutations in genes coding for enzymes involved in phospholipid biosynthesis revealed that the increase in the anionic lipid composition enhances the expression rate of the kdpFABC operon. Finally, we show that kinase activity of KdpD is stimulated in its native membrane environment by fusion with liposomes of anionic, but reduced with liposomes of zwitterionic phospholipids.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Transporte de Catión/genética , Proteínas de Escherichia coli/genética , Lípidos de la Membrana/química , Operón , Potasio/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácidos Grasos/química , Regulación Bacteriana de la Expresión Génica , Liposomas/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Fosfolípidos/química , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Vesículas Transportadoras/química
6.
J Bacteriol ; 190(7): 2360-7, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18245296

RESUMEN

Stimulus perception by the KdpD/KdpE two-component system of Escherichia coli is still controversial with respect to the nature of the stimulus that is perceived by the sensor kinase KdpD. Limiting potassium concentrations in the medium or high osmolality leads to KdpD/KdpE signal transduction, resulting in kdpFABC expression. It has been hypothesized that changes in turgor are sensed by KdpD through alterations in the physical state of the cytoplasmic membrane. However, in this study the quantitative determination of expression levels of the kdpFABC operon revealed that the system responds very effectively to K(+)-limiting conditions in the medium but barely and to various degrees to salt and sugar stress. Since the current view of stimulus perception calls for mainly intracellular parameters, which might be sensed by KdpD, we set out to test the cytoplasmic concentrations of ATP, K(+), Na(+), glutamate, proline, glycine, trehalose, putrescine, and spermidine under K(+)-limiting conditions. As a first result, the determination of the cytoplasmic volume, which is a prerequisite for such measurements, revealed that a transient shrinkage of the cytoplasmic volume, which is indicative of a reduction in turgor, occurred only under osmotic upshift but not under K(+)-limiting conditions. Furthermore, the intracellular ATP concentration significantly increased under osmotic upshift, whereas only a slight increase occurred after a potassium downshift. Finally, the cytoplasmic K(+) concentration rose severalfold only after an osmotic upshock. For the first time, these data indicate that stimulus perception by KdpD correlates neither with changes in the cytoplasmic volume nor with changes in the intracellular ATP or K(+) concentration or those of the other solutes tested. In conclusion, we propose that a reduction in turgor cannot be the stimulus for KdpD.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Escherichia coli/genética , Escherichia coli/fisiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Glicina/metabolismo , Microscopía de Contraste de Fase , Presión Osmótica , Potasio/metabolismo , Prolina/metabolismo , Proteínas Quinasas/genética , Putrescina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sodio/metabolismo , Espermidina/metabolismo , Trehalosa/metabolismo
7.
Biochemistry ; 47(26): 6907-16, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18540679

RESUMEN

Immunoblot quantitation of Escherichia coli ATP synthase isolated from atp wildtype and mutant cells, the latter comprising a reduced expression of the atpE gene coding for subunit c due to a point mutation within its Shine-Dalgarno sequence, suggested a variable stoichiometry of subunit c [Schemidt et al. (1995) Arch. Biochem. Biophys. 323, 423-428]. To study the c ring of the mutant strain and its stoichiometry in more detail, F O isolated from wildtype and mutant were investigated by quantitation, reconstitution, and cross-linking. Direct quantitation by staining with SYPRO Ruby revealed a reduction of subunit c in the mutant by a factor of 2 compared to F O subunits a and b. Rates of passive H (+) translocation correlated with the amount of subunit c present. Lower rates for mutant F O could be increased by addition of subunit c, whereas translocation rates remained constant by coreconstitution with nonfunctional subunit cD61G arguing against the presence of smaller c rings that are filled up with coreconstituted subunit c. Intermolecular cross-linking by oxidation of bicysteine-substituted subunit c ( cA21C/ cM65C) revealed an equal pattern of oligomer formation in wildtype and mutant also favoring a comparable subunit c stoichiometry. Cross-linking of membrane vesicles containing cysteine-substituted subunits a ( aN214C) and c ( cM65C) characterized the mutant F O preparation as a heterogeneous population, which consists of assembled F O and free ab 2 subcomplexes each present to approximately 50%. Thus, these data clearly demonstrate that the stoichiometry of the subunit c rings remains constant even after reduction of the synthesis of subunit c.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , ATPasas de Translocación de Protón Bacterianas/biosíntesis , ATPasas de Translocación de Protón Bacterianas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Transporte de Proteínas
8.
J Struct Biol ; 161(3): 411-8, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17945510

RESUMEN

The KdpFABC complex (Kdp) functions as a K+ pump in Escherichia coli and is a member of the family of P-type ATPases. Unlike other family members, Kdp has a unique oligomeric composition and is notable for segregating K+ transport and ATP hydrolysis onto separate subunits (KdpA and KdpB, respectively). We have produced two-dimensional crystals of the KdpFABC complex within reconstituted lipid bilayers and determined its three-dimensional structure from negatively stained samples using a combination of electron tomography and real-space averaging. The resulting map is at a resolution of 2.4 nm and reveals a dimer of Kdp molecules as the asymmetric unit; however, only the cytoplasmic domains are visible due to the lack of stain penetration within the lipid bilayer. The sizes of these cytoplasmic domains are consistent with Kdp and, using a pseudo-atomic model, we have described the subunit interactions that stabilize the Kdp dimer within the larger crystallographic array. These results illustrate the utility of electron tomography in structure determination of ordered assemblies, especially when disorder is severe enough to hamper conventional crystallographic analysis.


Asunto(s)
Adenosina Trifosfatasas/ultraestructura , Proteínas de Transporte de Catión/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/ultraestructura , ATPasa Intercambiadora de Sodio-Potasio/ultraestructura , Cristalografía , Microscopía Electrónica , Tomografía
9.
Chem Biodivers ; 4(6): 1170-82, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17589859

RESUMEN

A series of analogues of efrapeptin C (1), with variations in the central tripeptide epitope (positions 6-8), were prepared by a combination of solid- and solution-phase peptide syntheses. The conformations of the modified compounds 2-6 were investigated by circular-dichroism (CD) spectroscopy to differentiate between 3(10)- and alpha-helical secondary structures. The inhibitory activities of the new compounds towards F(1)-ATPase from E. coli were determined. The modified congeners 3-5 were less active by one order of magnitude compared to 1 (K(i) 10 microM), and 6 was completely inactive. Our experiments demonstrate that the flexible, central tripeptide epitope, comprising positions 6-8 in 1, is crucial for molecular recognition, even slight sequence modifications being hardly tolerated.


Asunto(s)
Péptidos , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Dicroismo Circular , Escherichia coli/efectos de los fármacos , Modelos Moleculares , Peptaiboles , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Estructura Secundaria de Proteína , Difracción de Rayos X
10.
Microbiologyopen ; 6(3)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28097817

RESUMEN

Two-component signal transduction constitutes the predominant strategy used by bacteria to adapt to fluctuating environments. The KdpD/KdpE system is one of the most widespread, and is crucial for K+ homeostasis. In Escherichia coli, the histidine kinase KdpD senses K+ availability, whereas the response regulator KdpE activates synthesis of the high-affinity K+ uptake system KdpFABC. Here we show that, in the absence of KdpD, kdpFABC expression can be activated via phosphorylation of KdpE by the histidine kinase PhoR. PhoR and its cognate response regulator PhoB comprise a phosphate-responsive two-component system, which senses phosphate limitation indirectly through the phosphate transporter PstCAB and its accessory protein PhoU. In vivo two-hybrid interaction studies based on the bacterial adenylate cyclase reveal pairwise interactions between KdpD, PhoR, and PhoU. Finally, we demonstrate that cross-regulation between the kdpFABC and pstSCAB operons occurs in both directions under simultaneous K+ and phosphate limitation, both in vitro and in vivo. This study for the first time demonstrates direct coupling between intracellular K+ and phosphate homeostasis and provides a mechanism for fine-tuning of the balance between positively and negatively charged ions in the bacterial cell.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Homeostasis , Fosfatos/metabolismo , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Transactivadores/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Fosforilación , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Técnicas del Sistema de Dos Híbridos
11.
Trends Microbiol ; 10(2): 70-4, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11827807

RESUMEN

Helicobacter pylori can survive for several hours at pH 1 in the presence of urea. Under these conditions, the organism maintains its cytoplasmic pH at a value close to neutral. The role of the cytoplasmically located urease enzyme in this process is a matter of debate. We propose that cytoplasmic ammonia generated by the action of urease is protonated by H(+) ions leaking in from the acidic medium and that the NH(4)(+) formed is extruded from the cytoplasm via an as-yet-unidentified transport system. This mechanism is compared with the general mechanism of cytoplasmic pH homeostasis in microorganisms.


Asunto(s)
Helicobacter pylori/fisiología , Ureasa/metabolismo , Citoplasma/química , Citoplasma/enzimología , Helicobacter pylori/enzimología , Helicobacter pylori/patogenicidad , Homeostasis , Concentración de Iones de Hidrógeno , Modelos Químicos , Urea/metabolismo , Ureasa/biosíntesis
12.
J Mol Biol ; 342(5): 1547-58, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15364580

RESUMEN

P-type ATPases are involved in the active transport of ions across biological membranes. The KdpFABC complex (P-type ATPase) of Escherichia coli is a high-affinity K+ uptake system that operates only when the cell experiences osmotic stress or K+ limitation. Here, we present the solution structure of the nucleotide binding domain of KdpB (backbone RMSD 0.17 A) and a model of the AMP-PNP binding mode based on intermolecular distance restraints. The calculated AMP-PNP binding mode shows the purine ring of the nucleotide to be "clipped" into the binding pocket via a pi-pi-interaction to F377 on one side and a cation-pi-interaction to K395 on the other. This binding mechanism seems to be conserved in all P-type ATPases, except the heavy metal transporting ATPases (type IB). Thus, we conclude that the Kdp-ATPase (currently type IA) is misgrouped and has more similarities to type III ATPases. The KdpB N-domain is the smallest and simplest known for a P-type ATPase, and represents a minimal example of this functional unit. No evidence of significant conformational changes was observed within the N-domain upon nucleotide binding, thus ruling out a role for ATP-induced conformational changes in the reaction cycle.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Conformación Proteica , Adenosina Trifosfatasas/química , Adenilil Imidodifosfato/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Transporte de Catión/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Soluciones
13.
FEBS Lett ; 556(1-3): 35-8, 2004 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-14706821

RESUMEN

Subunit a of the Escherichia coli ATP synthase, a 30 kDa integral membrane protein, was purified to homogeneity by a novel procedure incorporating selective extraction into a monophasic mixture of chloroform, methanol and water, followed by Ni-NTA chromatography in the mixed solvent. Pure subunit a was reconstituted with subunits b and c and phospholipids to form a functional proton-translocating unit. Nuclear magnetic resonance (NMR) spectra of the pure subunit a in the mixed solvent show good chemical shift dispersion and demonstrate the potential of the solvent mixture for NMR studies of the large membrane proteins that are currently intractable in aqueous detergent solutions.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , Subunidades de Proteína/química , Secuencia de Aminoácidos , ATPasas de Translocación de Protón Bacterianas , Cloroformo/química , Cromatografía en Agarosa/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Metanol/química , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/aislamiento & purificación , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Proteolípidos/metabolismo , Protones , Solventes/química , Agua/química
14.
FEBS Lett ; 543(1-3): 31-6, 2003 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12753900

RESUMEN

The Methanocaldococcus jannaschii (formerly Methanococcus jannaschii) protein Mj0968 has been reported to represent a soluble P-type ATPase [Ogawa et al., FEBS Lett. 471 (2000) 99-102]. In this study, we report that the heterologously expressed Mj0968-His(10) protein exhibits high rates of phosphatase activity, whereas only very low ATPase activity was measured. Replacement of the aspartate residue in the DSAGT motif (D7A), which becomes phosphorylated during the reaction cycle of P-type ATPases, does not affect the V(max), but only the K(M) of the reaction. Labeling studies with [gamma-(32)P]ATP and [alpha-(32)P]ATP revealed that the previously reported labeling experiments [Ogawa et al., 2000] do not necessarily show phosphorylation of Mj0968, but rather point to ATP binding. Binding studies with trinitrophenyl adenosine nucleotides showed low apparent K(d) values for those molecules. These results provide evidence that the native function of Mj0968 seems to be that of a phosphatase, rather than that of an ATP-hydrolyzing enzyme.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Methanococcus/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Nucleótidos de Adenina/metabolismo , Adenosina Trifosfato/metabolismo , Clonación Molecular , Cinética , Monoéster Fosfórico Hidrolasas/análisis , Monoéster Fosfórico Hidrolasas/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Trinitrobencenos/metabolismo
17.
EcoSal Plus ; 3(2)2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26443764

RESUMEN

Escherichia coli and Salmonella encounter osmotic pressure variations in natural environments that include host tissues, food, soil, and water. Osmotic stress causes water to flow into or out of cells, changing their structure, physics, and chemistry in ways that perturb cell functions. E. coli and Salmonella limit osmotically induced water fluxes by accumulating and releasing electrolytes and small organic solutes, some denoted compatible solutes because they accumulate to high levels without disturbing cell functions. Osmotic upshifts inhibit membrane-based energy transduction and macromolecule synthesis while activating existing osmoregulatory systems and specifically inducing osmoregulatory genes. The osmoregulatory response depends on the availability of osmoprotectants (exogenous organic compounds that can be taken up to become compatible solutes). Without osmoprotectants, K+ accumulates with counterion glutamate, and compatible solute trehalose is synthesized. Available osmoprotectants are taken up via transporters ProP, ProU, BetT, and BetU. The resulting compatible solute accumulation attenuates the K+ glutamate response and more effectively restores cell hydration and growth. Osmotic downshifts abruptly increase turgor pressure and strain the cytoplasmic membrane. Mechanosensitive channels like MscS and MscL open to allow nonspecific solute efflux and forestall cell lysis. Research frontiers include (i) the osmoadaptive remodeling of cell structure, (ii) the mechanisms by which osmotic stress alters gene expression, (iii) the mechanisms by which transporters and channels detect and respond to osmotic pressure changes, (iv) the coordination of osmoregulatory programs and selection of available osmoprotectants, and (v) the roles played by osmoregulatory mechanisms as E. coli and Salmonella survive or thrive in their natural environments.

18.
Antonie Van Leeuwenhoek ; 93(1-2): 151-61, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17659449

RESUMEN

Wild yeasts were isolated from process surfaces of two breweries. In total, 41 strains were obtained and differentiated by cultivation on CuSO(4) or crystal violet containing selective media, by fatty acid profiling and by a restriction analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene. The restriction analysis showed the highest differentiating capacity and resulted in eleven groups. These groups were identified by the API ID 32 C kit or by sequencing the D1/D2 region of the 26S rRNA gene. Most of the wild yeasts were identified as Saccharomyces cerevisiae (46% of all isolates) and Candida pelliculosa (anamorph: Pichia anomala) (24%). No obvious differences were detected between the two breweries. While all of the S. cerevisiae isolates were able to grow in beer, only six out of 10 C. pelliculosa strains were able to tolerate this substrate. However, most of the C. pelliculosa strains showed biofilm formation in a microplate assay, but none of the S. cerevisiae isolates. Therefore, it is assumed that the former species is involved in attachment and primary biofilm formation on beer bottling plants, while S. cerevisiae is a late colonizer of a preformed biofilm but increased the beer spoiling potential of the biofilm.


Asunto(s)
Cerveza/microbiología , Biopelículas/crecimiento & desarrollo , Levaduras/genética , Candida/clasificación , Candida/genética , Candida/crecimiento & desarrollo , ADN Espaciador Ribosómico/genética , Ácidos Grasos/metabolismo , Filogenia , Pichia/clasificación , Pichia/genética , Pichia/crecimiento & desarrollo , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico/genética , Saccharomyces/clasificación , Saccharomyces/genética , Saccharomyces/crecimiento & desarrollo , Levaduras/clasificación , Levaduras/crecimiento & desarrollo
19.
Biochemistry ; 47(11): 3564-75, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18298081

RESUMEN

The membrane-embedded K (+)-translocating KdpFABC complex from Escherichia coli belongs to the superfamily of P-type ATPases, which share common structural features as well as a well-studied catalytic mechanism. However, little is known about the oligomeric state of this class of enzymes. For many P-type ATPases, such as the Na (+)/K (+)-ATPase, Ca (2+)-ATPase, or H (+)-ATPase, an oligomeric state has been shown or is at least discussed but has not yet been characterized in detail. In the KdpFABC complex, kinetic analyses already indicated the presence of two cooperative ATP-binding sides within the functional enzyme and, thus, also point in the direction of a functional oligomer. However, the nature of this oligomeric state has not yet been fully elucidated. In the present work, a close vicinity of two KdpB subunits within the functional KdpFABC complex could be demonstrated by chemical cross-linking of native cysteine residues using copper 1,10-phenanthroline. The cysteines responsible for cross-link formation were identified by mutagenesis. Cross-linked and non-cross-linked KdpFABC complexes eluted with the same apparent molecular weight during gel filtration, which corresponded to the molecular weight of a homodimer, thereby clearly indicating that the KdpFABC complex was purified as a dimer. Isolated KdpFABC complexes were analyzed by transmission electron microscopy and exhibited an approximately 1:1 distribution of mono- and dimeric particles. Finally, reconstituted functional KdpFABC complexes were site-directedly labeled with flourescent dyes, and intermolecular single-molecule FRET analysis was carried out, from which a dissociation constant for a monomer/dimer equilibrium between 30 and 50 nM could be derived.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , Adenosina Trifosfatasas/genética , Sustitución de Aminoácidos/genética , Proteínas de Transporte de Catión/genética , Cromatografía en Gel , Reactivos de Enlaces Cruzados/química , Dimerización , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Relación Estructura-Actividad
20.
J Bioenerg Biomembr ; 39(5-6): 397-402, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18058005

RESUMEN

The prokaryotic KdpFABC complex from the enterobacterium Escherichia coli represents a unique type of P-type ATPase composed of four different subunits, in which a catalytically active P-type ATPase has evolutionary recruited a potassium channel module in order to facilitate ATP-driven potassium transport into the bacterial cell against steep concentration gradients. This unusual composition entails special features with respect to other P-type ATPases, for example the spatial separation of the sites of ATP hydrolysis and substrate transport on two different polypeptides within this multisubunit enzyme complex, which, in turn, leads to an interesting coupling mechanism. As all other P-type ATPases, also the KdpFABC complex cycles between the so-called E1 and E2 states during catalysis, each of which comprises different structural properties together with different binding affinities for both ATP and the transport substrate. Distinct configurations of this transport cycle have recently been visualized in the working enzyme. All typical features of P-type ATPases are attributed to the KdpB subunit, which also comprises strong structural homologies to other P-type ATPase family members. However, the translocation of the transport substrate, potassium, is mediated by the KdpA subunit, which comprises structural as well as functional homologies to MPM-type potassium channels like KcsA from Streptomyces lividans. Subunit KdpC has long been thought to exhibit an FXYD protein-like function in the regulation of KdpFABC activity. However, our latest results are in favor of the notion that KdpC might act as a catalytical chaperone, which cooperatively interacts with the nucleotide to be hydrolyzed and, thus, increases the rather untypical weak nucleotide binding affinity of the KdpB nucleotide binding domain.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Transporte de Catión/química , Proteínas de Escherichia coli/fisiología , Adenosina Trifosfatasas/fisiología , Proteínas de Transporte de Catión/fisiología , Proteínas de Escherichia coli/química , Potasio/metabolismo , Conformación Proteica , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA