Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(19): e108375, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375000

RESUMEN

New SARS-CoV-2 variants are continuously emerging with critical implications for therapies or vaccinations. The 22 N-glycan sites of Spike remain highly conserved among SARS-CoV-2 variants, opening an avenue for robust therapeutic intervention. Here we used a comprehensive library of mammalian carbohydrate-binding proteins (lectins) to probe critical sugar residues on the full-length trimeric Spike and the receptor binding domain (RBD) of SARS-CoV-2. Two lectins, Clec4g and CD209c, were identified to strongly bind to Spike. Clec4g and CD209c binding to Spike was dissected and visualized in real time and at single-molecule resolution using atomic force microscopy. 3D modelling showed that both lectins can bind to a glycan within the RBD-ACE2 interface and thus interferes with Spike binding to cell surfaces. Importantly, Clec4g and CD209c significantly reduced SARS-CoV-2 infections. These data report the first extensive map and 3D structural modelling of lectin-Spike interactions and uncovers candidate receptors involved in Spike binding and SARS-CoV-2 infections. The capacity of CLEC4G and mCD209c lectins to block SARS-CoV-2 viral entry holds promise for pan-variant therapeutic interventions.


Asunto(s)
Receptores Mitogénicos/metabolismo , SARS-CoV-2/metabolismo , Animales , Sitios de Unión/fisiología , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Glicosilación , Células HEK293 , Humanos , Ratones , Simulación de Dinámica Molecular , Unión Proteica/fisiología , Células Vero , Internalización del Virus
2.
Anal Chem ; 96(1): 163-169, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153380

RESUMEN

Understanding the biological role of protein-linked glycans requires the reliable identification of glycans. Isomer separation and characterization often entail mass spectrometric detection preceded by high-performance chromatography on porous graphitic carbon. To this end, stable isotope-labeled glycans have emerged as powerful tools for retention time normalization. Hitherto, such standards were obtained by chemoenzymatic or purely enzymatic methods, which introduce, e.g., 13C-containing N-acetyl groups or galactose into native glycans. Glycan release with anhydrous hydrazine opens another route for heavy isotope introduction via concomitant de-N-acetylation. Here, we describe that de-N-acetylation can also be achieved with hydrazine hydrate, which is a more affordable and less hazardous reagent. Despite the slower reaction rate, complete conversion is achievable in 72 h at 100 °C for glycans with biantennary glycans with or without sialic acids. Shorter incubation times allow for the isolation of intermediate products with a defined degree of free amino groups, facilitating introduction of different numbers of heavy isotopes. Mass encoded glycans obtained by this versatile approach can serve a broad range of applications, e.g., as internal standards for isomer-specific studies of N-glycans, O-glycans, and human milk oligosaccharide by LC-MS on either porous graphitic carbon or─following permethylation─on reversed phase.


Asunto(s)
Grafito , Polisacáridos , Humanos , Polisacáridos/química , Espectrometría de Masas , Oligosacáridos/análisis , Carbono/química , Grafito/química , Isótopos
3.
Beilstein J Org Chem ; 20: 607-620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505241

RESUMEN

In the beginning was the word. But there were no words for N-glycans, at least, no simple words. Next to chemical formulas, the IUPAC code can be regarded as the best, most reliable and yet immediately comprehensible annotation of oligosaccharide structures of any type from any source. When it comes to N-glycans, the venerable IUPAC code has, however, been widely supplanted by highly simplified terms for N-glycans that count the number of antennae or certain components such as galactoses, sialic acids and fucoses and give only limited room for exact structure description. The highly illustrative - and fortunately now standardized - cartoon depictions gained much ground during the last years. By their very nature, cartoons can neither be written nor spoken. The underlying machine codes (e.g., GlycoCT, WURCS) are definitely not intended for direct use in human communication. So, one might feel the need for a simple, yet intelligible and precise system for alphanumeric descriptions of the hundreds and thousands of N-glycan structures. Here, we present a system that describes N-glycans by defining their terminal elements. To minimize redundancy and length of terms, the common elements of N-glycans are taken as granted. The preset reading order facilitates definition of positional isomers. The combination with elements of the condensed IUPAC code allows to describe even rather complex structural elements. Thus, this "proglycan" coding could be the missing link between drawn structures and software-oriented representations of N-glycan structures. On top, it may greatly facilitate keyboard-based mining for glycan substructures in glycan repositories.

4.
Glycoconj J ; 40(1): 97-108, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36269466

RESUMEN

Studying the interaction between the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 and Arabidopsis thaliana has shed light onto the various forms of mechanisms plants use to defend themselves against pathogen attack. While a lot of emphasis has been put on investigating changes in protein expression in infected plants, only little information is available on the effect infection plays on the plants N-glycan composition. To close this gap in knowledge, total N-glycans were enriched from P. syringae DC3000-infected and mock treated Arabidopsis seedlings and analyzed via MALDI-TOF-MS. Additionally, fluorescently labelled N-glycans were quantified via HPLC-FLD. N-glycans from infected plants were overall less processed and displayed increased amounts of oligomannosidic N-glycans. As multiple peaks for certain oligomannosidic glycoforms were detected upon separation via liquid chromatography, a porous graphitic carbon (PGC)-analysis was conducted to separate individual N-glycan isomers. Indeed, multiple different N-glycan isomers with masses of two N-acetylhexosamine residues plus 8, 9 or 10 hexoses were detected in the infected plants which were absent in the mock controls. Treatment with jack bean α-mannosidase resulted in incomplete removal of hexoses from these N-glycans, indicating the presence of glucose residues. This hints at the accumulation of misfolded glycoproteins in the infected plants, likely because of endoplasmic reticulum (ER) stress. In addition, poly-hexose structures susceptible to α-amylase treatment were found in the DC3000-infected plants, indicating alterations in starch metabolism due to the infection process.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Arabidopsis/microbiología , Pseudomonas syringae/metabolismo , Polisacáridos/metabolismo , Glicoproteínas/metabolismo , Procesamiento Proteico-Postraduccional
5.
Pediatr Allergy Immunol ; 34 Suppl 28: e13854, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37186333

RESUMEN

Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.


Asunto(s)
Hipersensibilidad , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/terapia , Alérgenos , Inmunoglobulina E
6.
Mol Cell Proteomics ; 19(1): 11-30, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31591262

RESUMEN

Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.


Asunto(s)
Anticuerpos Monoclonales/química , Productos Biológicos , Biofarmacia/métodos , Anticuerpos Monoclonales/metabolismo , Glicómica/métodos , Glicopéptidos/metabolismo , Glicosilación , Humanos , Laboratorios , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos
7.
Plant J ; 103(1): 184-196, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32031706

RESUMEN

Chlorella microalgae are increasingly used for various purposes such as fatty acid production, wastewater processing, or as health-promoting food supplements. A mass spectrometry-based survey of N-glycan structures of strain collection specimens and 80 commercial Chlorella products revealed a hitherto unseen intragenus diversity of N-glycan structures. Differing numbers of methyl groups, pentoses, deoxyhexoses, and N-acetylglucosamine culminated in c. 100 different glycan masses. Thirteen clearly discernible glycan-type groups were identified. Unexpected features included the occurrence of arabinose, of different and rare types of monosaccharide methylation (e.g. 4-O-methyl-N-acetylglucosamine), and substitution of the second N-acetylglucosamine. Analysis of barcode ITS1-5.8S-ITS2 rDNA sequences established a phylogenetic tree that essentially went hand in hand with the grouping obtained by glycan patterns. This brief prelude to microalgal N-glycans revealed a fabulous wealth of undescribed structural features that finely differentiated Chlorella-like microalgae, which are notoriously poor in morphological attributes. In light of the almost identical N-glycan structural features that exist within vertebrates or land plants, the herein discovered diversity is astonishing and argues for a selection pressure only explicable by a fundamental functional role of these glycans.


Asunto(s)
Chlorella/genética , Polisacáridos/metabolismo , Chlorella/clasificación , Chlorella/metabolismo , ADN de Algas/genética , Variación Genética , Glicosilación , Espectrometría de Masas , Filogenia , Polisacáridos/química
8.
Retrovirology ; 18(1): 17, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183026

RESUMEN

BACKGROUND: HIV remains one of the most important health issues worldwide, with almost 40 million people living with HIV. Although patients develop antibodies against the virus, its high mutation rate allows evasion of immune responses. Some patients, however, produce antibodies that are able to bind to, and neutralise different strains of HIV. One such 'broadly neutralising' antibody is 'N6'. Identified in 2016, N6 can neutralise 98% of HIV-1 isolates with a median IC50 of 0.066 µg/mL. This neutralisation breadth makes N6 a very promising therapeutic candidate. RESULTS: N6 was expressed in a glycoengineered line of N. benthamiana plants (pN6) and compared to the mammalian cell-expressed equivalent (mN6). Expression at 49 mg/kg (fresh leaf tissue) was achieved in plants, although extraction and purification are more challenging than for most plant-expressed antibodies. N-glycoanalysis demonstrated the absence of xylosylation and a reduction in α(1,3)-fucosylation that are typically found in plant glycoproteins. The N6 light chain contains a potential N-glycosylation site, which was modified and displayed more α(1,3)-fucose than the heavy chain. The binding kinetics of pN6 and mN6, measured by surface plasmon resonance, were similar for HIV gp120. pN6 had a tenfold higher affinity for FcγRIIIa, which was reflected in an antibody-dependent cellular cytotoxicity assay, where pN6 induced a more potent response from effector cells than that of mN6. pN6 demonstrated the same potency and breadth of neutralisation as mN6, against a panel of HIV strains. CONCLUSIONS: The successful expression of N6 in tobacco supports the prospect of developing a low-cost, low-tech production platform for a monoclonal antibody cocktail to control HIV in low-to middle income countries.


Asunto(s)
Anticuerpos Neutralizantes/análisis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Nicotiana/inmunología , Células HEK293 , Anticuerpos Anti-VIH/aislamiento & purificación , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , VIH-1/genética , Humanos , Concentración 50 Inhibidora , Pruebas de Neutralización , Hojas de la Planta/genética , Nicotiana/genética
9.
Anal Chem ; 93(45): 15175-15182, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34723506

RESUMEN

The importance of protein glycosylation in the biomedical field requires methods that not only quantitate structures by their monosaccharide composition, but also resolve and identify the many isomers expressed by mammalian cells. The art of unambiguous identification of isomeric structures in complex mixtures, however, did not yet catch up with the fast pace of advance of high-throughput glycomics. Here, we present a strategy for deducing structures with the help of a deci-minute accurate retention time library for porous graphitic carbon chromatography with mass spectrometric detection. We implemented the concept for the fundamental N-glycan type consisting of five hexoses, four N-acetylhexosamines and one fucose residue. Nearly all of the 40 biosynthetized isomers occupied unique elution positions. This result demonstrates the unique isomer selectivity of porous graphitic carbon. With the help of a rather tightly spaced grid of isotope-labeled internal N-glycan, standard retention times were transposed to a standard chromatogram. Application of this approach to animal and human brain N-glycans immediately identified the majority of structures as being of the bisected type. Most notably, it exposed hybrid-type glycans with galactosylated and even Lewis X containing bisected N-acetylglucosamine, which have not yet been discovered in a natural source. Thus, the time grid approach implemented herein facilitated discovery of the still missing pieces of the N-glycome in our most noble organ and suggests itself─in conjunction with collision induced dissociation─as a starting point for the overdue development of isomer-specific deep structural glycomics.


Asunto(s)
Glicómica , Polisacáridos , Animales , Encéfalo , Fucosa , Glicosilación , Humanos
10.
FEMS Yeast Res ; 21(2)2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33599728

RESUMEN

Methylotrophic yeasts are considered to use alcohol oxidases to assimilate methanol, different to bacteria which employ alcohol dehydrogenases with better energy conservation. The yeast Komagataella phaffii carries two genes coding for alcohol oxidase, AOX1 and AOX2. The deletion of the AOX1 leads to the MutS phenotype and the deletion of AOX1 and AOX2 to the Mut- phenotype. The Mut- phenotype is commonly regarded as unable to utilize methanol. In contrast to the literature, we found that the Mut- strain can consume methanol. This ability was based on the promiscuous activity of alcohol dehydrogenase Adh2, an enzyme ubiquitously found in yeast and normally responsible for ethanol consumption and production. Using 13C labeled methanol as substrate we could show that to the largest part methanol is dissimilated to CO2 and a small part is incorporated into metabolites, the biomass, and the secreted recombinant protein. Overexpression of the ADH2 gene in K. phaffii Mut- increased both the specific methanol uptake rate and recombinant protein production, even though the strain was still unable to grow. These findings imply that thermodynamic and kinetic constraints of the dehydrogenase reaction facilitated the evolution towards alcohol oxidase-based methanol metabolism in yeast.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Regulación Fúngica de la Expresión Génica , Metanol/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Alcohol Deshidrogenasa/análisis , Alcohol Deshidrogenasa/genética , Proteínas Fúngicas/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes , Saccharomycetales/enzimología
11.
Circ Res ; 124(2): 243-255, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30582450

RESUMEN

RATIONALE: Endothelial colony forming cells (ECFCs) or late blood outgrowth endothelial cells can be isolated from human cord or peripheral blood, display properties of endothelial progenitors, home into ischemic tissues and support neovascularization in ischemic disease models. OBJECTIVE: To assess the functions of CYTL1 (cytokine-like 1), a factor we found preferentially produced by ECFCs, in regard of vessel formation. METHODS AND RESULTS: We show by transcriptomic analysis that ECFCs are distinguished from endothelial cells of the vessel wall by production of high amounts of CYTL1. Modulation of expression demonstrates that the factor confers increased angiogenic sprouting capabilities to ECFCs and can also trigger sprouting of mature endothelial cells. The data further display that CYTL1 can be induced by hypoxia and that it functions largely independent of VEGF-A (vascular endothelial growth factor-A). By recombinant production of CYTL1 we confirm that the peptide is indeed a strong proangiogenic factor and induces sprouting in cellular assays and functional vessel formation in animal models comparable to VEGF-A. Mass spectroscopy corroborates that CYTL1 is specifically O-glycosylated on 2 neighboring threonines in the C-terminal part and this modification is important for its proangiogenic bioactivity. Further analyses show that the factor does not upregulate proinflammatory genes and strongly induces several metallothionein genes encoding anti-inflammatory and antiapoptotic proteins. CONCLUSIONS: We conclude that CYTL1 can mediate proangiogenic functions ascribed to endothelial progenitors such as ECFCs in vivo and may be a candidate to support vessel formation and tissue regeneration in ischemic pathologies.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Comunicación Autocrina , Proteínas Sanguíneas/metabolismo , Neovascularización de la Córnea , Citocinas/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Comunicación Paracrina , Proteínas Angiogénicas/genética , Animales , Proteínas Sanguíneas/genética , Hipoxia de la Célula , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Glicosilación , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones SCID , Vías Secretoras , Transducción de Señal , Esferoides Celulares , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
J Biol Chem ; 294(38): 13995-14008, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31362986

RESUMEN

Human immunoglobulin A (IgA) is the most prevalent antibody class at mucosal sites with an important role in mucosal defense. Little is known about the impact of N-glycan modifications of IgA1 and IgA2 on binding to the Fcα receptor (FcαRI), which is also heavily glycosylated at its extracellular domain. Here, we transiently expressed human epidermal growth factor receptor 2 (HER2)-binding monomeric IgA1, IgA2m(1), and IgA2m(2) variants in Nicotiana benthamiana ΔXT/FT plants lacking the enzymes responsible for generating nonhuman N-glycan structures. By coinfiltrating IgA with the respective glycan-modifying enzymes, we generated IgA carrying distinct homogenous N-glycans. We demonstrate that distinctly different N-glycan profiles did not influence antigen binding or the overall structure and integrity of the IgA antibodies but did affect their thermal stability. Using size-exclusion chromatography, differential scanning and isothermal titration calorimetry, surface plasmon resonance spectroscopy, and molecular modeling, we probed distinct IgA1 and IgA2 glycoforms for binding to four different FcαRI glycoforms and investigated the thermodynamics and kinetics of complex formation. Our results suggest that different N-glycans on the receptor significantly contribute to binding affinities for its cognate ligand. We also noted that full-length IgA and FcαRI form a mixture of 1:1 and 1:2 complexes tending toward a 1:1 stoichiometry due to different IgA tailpiece conformations that make it less likely that both binding sites are simultaneously occupied. In conclusion, N-glycans of human IgA do not affect its structure and integrity but its thermal stability, and FcαRI N-glycans significantly modulate binding affinity to IgA.


Asunto(s)
Inmunoglobulina A/metabolismo , Polisacáridos/química , Receptores Fc/metabolismo , Sitios de Unión , Glicosilación , Células HEK293 , Humanos , Inmunoglobulina A/química , Cinética , Simulación de Dinámica Molecular , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Receptores Fc/química , Receptores Fc/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Termodinámica , Nicotiana/metabolismo
13.
Glycobiology ; 30(8): 663-676, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32039451

RESUMEN

The many emerging applications of microalgae such as Chlorella also instigate interest in their ability to conduct protein modifications such as N-glycosylation. Chlorella vulgaris has recently been shown to equip its proteins with highly O-methylated oligomannosidic N-glycans. Two other frequently occurring species names are Chlorella sorokiniana and Chlorella pyrenoidosa-even though the latter is taxonomically ill defined. We analyzed by mass spectrometry and nuclear magnetic resonance spectroscopy the N-glycans of type culture collection strains of C. sorokiniana and of a commercial product labeled C. pyrenoidosa. Both samples contained arabinose, which has hitherto not been found in N-glycans. Apart from this only commonality, the structures differed fundamentally from each other and from that of N-glycans of land plants. Despite these differences, the two algae lines exhibited considerable homology in their ITS1-5.8S-ITS2 rDNA sequences. These drastic differences of N-glycan structures between species belonging to the very same genus provoke questions as to the biological function on a unicellular organism.


Asunto(s)
Arabinosa/química , Chlorella/química , Polisacáridos/química , Conformación de Carbohidratos , Espectrometría de Masas
14.
Plant Mol Biol ; 103(6): 597-608, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32346812

RESUMEN

KEY MESSAGE: Nanobody-heavy chain (VHH-Fc) antibody formats have the potential to immunomodulate even highly accumulating proteins and provide a valuable tool to experimentally modulate the subcellular distribution of seed storage proteins. Recombinant antibodies often obtain high accumulation levels in plants, and thus, besides being the actual end-product, antibodies targeting endogenous host proteins can be used to interfere with the localization and functioning of their corresponding antigens. Here, we compared the effect of a seed-expressed nanobody-heavy chain (VHH-Fc) antibody against the highly abundant Arabidopsis thaliana globulin seed storage protein cruciferin with that of a VHH-Fc antibody without endogenous target. Both antibodies reached high accumulation levels of around 10% of total soluble protein, but strikingly, another significant part was present in the insoluble protein fraction and was recovered only after extraction under denaturing conditions. In seeds containing the anti-cruciferin antibodies but not the antibody without endogenous target, the amount of soluble, processed globulin subunits was severely reduced and a major part of the cruciferin molecules was found as precursor in the insoluble fraction. Moreover, in these seeds, aberrant vacuolar phenotypes were observed that were different from the effects caused by the depletion of globulins in knock-out seeds. Remarkably, the seeds with strongly reduced globulin amounts are fully viable and germinate with frequencies similar to wild type, illustrating how flexible seeds can retrieve amino acids from the stored proteins to start germination.


Asunto(s)
Anticuerpos/inmunología , Anticuerpos/metabolismo , Globulinas/inmunología , Proteínas de Almacenamiento de Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Vacuolas/metabolismo
15.
Plant Biotechnol J ; 18(2): 402-414, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31301102

RESUMEN

Plants can provide a cost-effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3-fucose and ß1,2-xylose residues and glycans extended with terminal ß1,4-galactose. Surface plasmon resonance-based assays were established for kinetic/affinity evaluation of antibody-FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant-made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell-derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant-produced antibodies.


Asunto(s)
Anticuerpos Anti-VIH , Fragmentos Fc de Inmunoglobulinas , Ingeniería de Proteínas , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/inmunología , VIH-1 , Humanos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Polisacáridos , Unión Proteica , Nicotiana/genética
16.
BMC Microbiol ; 20(1): 352, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203363

RESUMEN

BACKGROUND: The Gram-negative oral pathogen Tannerella forsythia strictly depends on the external supply of the essential bacterial cell wall sugar N-acetylmuramic acid (MurNAc) for survival because of the lack of the common MurNAc biosynthesis enzymes MurA/MurB. The bacterium thrives in a polymicrobial biofilm consortium and, thus, it is plausible that it procures MurNAc from MurNAc-containing peptidoglycan (PGN) fragments (muropeptides) released from cohabiting bacteria during natural PGN turnover or cell death. There is indirect evidence that in T. forsythia, an AmpG-like permease (Tanf_08365) is involved in cytoplasmic muropeptide uptake. In E. coli, AmpG is specific for the import of N-acetylglucosamine (GlcNAc)-anhydroMurNAc(-peptides) which are common PGN turnover products, with the disaccharide portion as a minimal requirement. Currently, it is unclear which natural, complex MurNAc sources T. forsythia can utilize and which role AmpG plays therein. RESULTS: We performed a screen of various putative MurNAc sources for T. forsythia mimicking the situation in the natural habitat and compared bacterial growth and cell morphology of the wild-type and a mutant lacking AmpG (T. forsythia ΔampG). We showed that supernatants of the oral biofilm bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and of E. coli ΔampG, as well as isolated PGN and defined PGN fragments obtained after enzymatic digestion, namely GlcNAc-anhydroMurNAc(-peptides) and GlcNAc-MurNAc(-peptides), could sustain growth of T. forsythia wild-type, while T. forsythia ΔampG suffered from growth inhibition. In supernatants of T. forsythia ΔampG, the presence of GlcNAc-anhMurNAc and, unexpectedly, also GlcNAc-MurNAc was revealed by tandem mass spectrometry analysis, indicating that both disaccharides are substrates of AmpG. The importance of AmpG in the utilization of PGN fragments as MurNAc source was substantiated by a significant ampG upregulation in T. forsythia cells cultivated with PGN, as determined by quantitative real-time PCR. Further, our results indicate that PGN-degrading amidase, lytic transglycosylase and muramidase activities in a T. forsythia cell extract are involved in PGN scavenging. CONCLUSION: T. forsythia metabolizes intact PGN as well as muropeptides released from various bacteria and the bacterium's inner membrane transporter AmpG is essential for growth on these MurNAc sources, and, contrary to the situation in E. coli, imports both, GlcNAc-anhMurNAc and GlcNAc-MurNAc fragments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácidos Murámicos/metabolismo , Tannerella forsythia/metabolismo , Proteínas Bacterianas/genética , Biopelículas , Pared Celular/química , Pared Celular/metabolismo , Expresión Génica , Proteínas de Transporte de Membrana/genética , Boca/microbiología , Ácidos Murámicos/química , Peptidoglicano/química , Peptidoglicano/metabolismo , Especificidad por Sustrato , Tannerella forsythia/genética , Tannerella forsythia/crecimiento & desarrollo , Tannerella forsythia/ultraestructura
17.
Plant Physiol ; 180(2): 859-873, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30971450

RESUMEN

The Golgi apparatus consists of stacked cisternae filled with enzymes that facilitate the sequential and highly controlled modification of glycans from proteins that transit through the organelle. Although the glycan processing pathways have been extensively studied, the underlying mechanisms that concentrate Golgi-resident glycosyltransferases and glycosidases in distinct Golgi compartments are poorly understood. The single-pass transmembrane domain (TMD) of n-acetylglucosaminyltransferaseI (GnTI) accounts for its steady-state distribution in the cis/medial-Golgi. Here, we investigated the contribution of individual amino acid residues within the TMD of Arabidopsis (Arabidopsis thaliana) and Nicotiana tabacum GnTI toward Golgi localization and n-glycan processing. Conserved sequence motifs within the TMD were replaced with those from the established trans-Golgi enzyme α2,6-sialyltransferase and site-directed mutagenesis was used to exchange individual amino acid residues. Subsequent subcellular localization of fluorescent fusion proteins and n-glycan profiling revealed that a conserved Gln residue in the GnTI TMD is essential for its cis/medial-Golgi localization. Substitution of the crucial Gln residue with other amino acids resulted in mislocalization to the vacuole and impaired n-glycan processing in vivo. Our results suggest that sequence-specific features of the GnTI TMD are required for its interaction with a Golgi-resident adaptor protein or a specific lipid environment that likely promotes coat protein complexI-mediated retrograde transport, thus maintaining the steady-state distribution of GnTI in the cis/medial-Golgi of plants.


Asunto(s)
Aminoácidos/metabolismo , Arabidopsis/enzimología , Aparato de Golgi/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteína Coat de Complejo I/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación/genética , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Dominios Proteicos , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo
18.
FEMS Yeast Res ; 20(1)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922548

RESUMEN

The compartmentalization of metabolic and regulatory pathways is a common pattern of living organisms. Eukaryotic cells are subdivided into several organelles enclosed by lipid membranes. Organelle proteomes define their functions. Yeasts, as simple eukaryotic single cell organisms, are valuable models for higher eukaryotes and frequently used for biotechnological applications. While the subcellular distribution of proteins is well studied in Saccharomyces cerevisiae, this is not the case for other yeasts like Komagataella phaffii (syn. Pichia pastoris). Different to most well-studied yeasts, K. phaffii can grow on methanol, which provides specific features for production of heterologous proteins and as a model for peroxisome biology. We isolated microsomes, very early Golgi, early Golgi, plasma membrane, vacuole, cytosol, peroxisomes and mitochondria of K. phaffii from glucose- and methanol-grown cultures, quantified their proteomes by liquid chromatography-electrospray ionization-mass spectrometry of either unlabeled or tandem mass tag-labeled samples. Classification of the proteins by their relative enrichment, allowed the separation of enriched proteins from potential contaminants in all cellular compartments except the peroxisomes. We discuss differences to S. cerevisiae, outline organelle specific findings and the major metabolic pathways and provide an interactive map of the subcellular localization of proteins in K. phaffii.


Asunto(s)
Proteínas Fúngicas/química , Redes y Vías Metabólicas , Proteoma , Saccharomycetales/genética , Biotecnología , Proteínas Fúngicas/genética , Metanol/metabolismo , Peroxisomas/metabolismo , Saccharomycetales/química , Fracciones Subcelulares
19.
J Biol Chem ; 293(3): 1070-1087, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29187599

RESUMEN

N-Glycosylation plays a fundamental role in many biological processes. Human diamine oxidase (hDAO), required for histamine catabolism, has multiple N-glycosylation sites, but their roles, for example in DAO secretion, are unclear. We recently reported that the N-glycosylation sites Asn-168, Asn-538, and Asn-745 in recombinant hDAO (rhDAO) carry complex-type glycans, whereas Asn-110 carries only mammalian-atypical oligomannosidic glycans. Here, we show that Asn-110 in native hDAO from amniotic fluid and Caco-2 cells, DAO from porcine kidneys, and rhDAO produced in two different HEK293 cell lines is also consistently occupied by oligomannosidic glycans. Glycans at Asn-168 were predominantly sialylated with bi- to tetra-antennary branches, and Asn-538 and Asn-745 had similar complex-type glycans with some tissue- and cell line-specific variations. The related copper-containing amine oxidase human vascular adhesion protein-1 also exclusively displayed high-mannose glycosylation at Asn-137. X-ray structures revealed that the residues adjacent to Asn-110 and Asn-137 form a highly conserved hydrophobic cleft interacting with the core trisaccharide. Asn-110 replacement with Gln completely abrogated rhDAO secretion and caused retention in the endoplasmic reticulum. Mutations of Asn-168, Asn-538, and Asn-745 reduced rhDAO secretion by 13, 71, and 32%, respectively. Asn-538/745 double and Asn-168/538/745 triple substitutions reduced rhDAO secretion by 85 and 94%. Because of their locations in the DAO structure, Asn-538 and Asn-745 glycosylations might be important for efficient DAO dimer formation. These functional results are reflected in the high evolutionary conservation of all four glycosylation sites. Human DAO is abundant only in the gastrointestinal tract, kidney, and placenta, and glycosylation seems essential for reaching high enzyme expression levels in these tissues.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Células CACO-2 , Cristalografía por Rayos X , Glicosilación , Células HEK293 , Humanos , Pliegue de Proteína
20.
BMC Microbiol ; 19(1): 200, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477019

RESUMEN

BACKGROUND: Tannerella forsythia is a Gram-negative oral pathogen. Together with Porphyromonas gingivalis and Treponema denticola it constitutes the "red complex" of bacteria, which is crucially associated with periodontitis, an inflammatory disease of the tooth supporting tissues that poses a health burden worldwide. Due to the absence of common peptidoglycan biosynthesis genes, the unique bacterial cell wall sugar N-acetylmuramic acid (MurNAc) is an essential growth factor of T. forsythia to build up its peptidoglycan cell wall. Peptidoglycan is typically composed of a glycan backbone of alternating N-acetylglucosamine (GlcNAc) and MurNAc residues that terminates with anhydroMurNAc (anhMurNAc), and short peptides via which the sugar backbones are cross-linked to build up a bag-shaped network. RESULTS: We investigated T. forsythia's peptidoglycan structure, which is an essential step towards anti-infective strategies against this pathogen. A new sensitive radioassay was developed which verified the presence of MurNAc and anhMurNAc in the cell wall of the bacterium. Upon digest of isolated peptidoglycan with endo-N-acetylmuramidase, exo-N-acetylglucosaminidase and muramyl-L-alanine amidase, respectively, peptidoglycan fragments were obtained. HPLC and mass spectrometry (MS) analyses revealed the presence of GlcNAc-MurNAc-peptides and the cross-linked dimer with retention-times and masses, respectively, equalling those of control digests of Escherichia coli and P. gingivalis peptidoglycan. Data were confirmed by tandem mass spectrometry (MS2) analysis, revealing the GlcNAc-MurNAc-tetra-tetra-MurNAc-GlcNAc dimer to contain the sequence of the amino acids alanine, glutamic acid, diaminopimelic acid (DAP) and alanine, as well as a direct cross-link between DAP on the third and alanine on the fourth position of the two opposite stem peptides. The stereochemistry of DAP was determined by reversed-phase HPLC after dabsylation of hydrolysed peptidoglycan to be of the meso-type. CONCLUSION: T. forsythia peptidoglycan is of the A1γ-type like that of E. coli. Additionally, the classification of P. gingivalis peptidoglycan as A3γ needs to be revised to A1γ, due to the presence of meso-DAP instead of LL-DAP, as reported previously.


Asunto(s)
Ácidos Murámicos/análisis , Peptidoglicano/química , Peptidoglicano/metabolismo , Periodontitis/microbiología , Porphyromonas gingivalis/metabolismo , Tannerella forsythia/metabolismo , Procesos Autotróficos , Pared Celular/química , Pared Celular/genética , Pared Celular/metabolismo , Humanos , Espectrometría de Masas , Boca/microbiología , Ácidos Murámicos/metabolismo , Porphyromonas gingivalis/química , Porphyromonas gingivalis/genética , Tannerella forsythia/química , Tannerella forsythia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA