Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2014): 20232155, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196357

RESUMEN

The detection of optic flow is important for generating optomotor responses to mediate retinal image stabilization, and it can also be used during ongoing locomotion for centring and velocity control. Previous work in hummingbirds has separately examined the roles of optic flow during hovering and when centring through a narrow passage during forward flight. To develop a hypothesis for the visual control of forward flight velocity, we examined the behaviour of hummingbirds in a flight tunnel where optic flow could be systematically manipulated. In all treatments, the animals exhibited periods of forward flight interspersed with bouts of spontaneous hovering. Hummingbirds flew fastest when they had a reliable signal of optic flow. All optic flow manipulations caused slower flight, suggesting that hummingbirds had an expected optic flow magnitude that was disrupted. In addition, upward and downward optic flow drove optomotor responses for maintaining altitude during forward flight. When hummingbirds made voluntary transitions to hovering, optomotor responses were observed to all directions. Collectively, these results are consistent with hummingbirds controlling flight speed via mechanisms that use an internal forward model to predict expected optic flow whereas flight altitude and hovering position are controlled more directly by sensory feedback from the environment.


Asunto(s)
Altitud , Aves , Animales , Retroalimentación Sensorial , Locomoción
2.
J Exp Biol ; 227(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38680114

RESUMEN

Animals exhibit an abundant diversity of forms, and this diversity is even more evident when considering animals that can change shape on demand. The evolution of flexibility contributes to aspects of performance from propulsive efficiency to environmental navigation. It is, however, challenging to quantify and compare body parts that, by their nature, dynamically vary in shape over many time scales. Commonly, body configurations are tracked by labelled markers and quantified parametrically through conventional measures of size and shape (descriptor approach) or non-parametrically through data-driven analyses that broadly capture spatiotemporal deformation patterns (shape variable approach). We developed a weightless marker tracking technique and combined these analytic approaches to study wing morphological flexibility in hoverfeeding Anna's hummingbirds (Calypte anna). Four shape variables explained >95% of typical stroke cycle wing shape variation and were broadly correlated with specific conventional descriptors such as wing twist and area. Moreover, shape variables decomposed wing deformations into pairs of in-plane and out-of-plane components at integer multiples of the stroke frequency. This property allowed us to identify spatiotemporal deformation profiles characteristic of hoverfeeding with experimentally imposed kinematic constraints, including through shape variables explaining <10% of typical shape variation. Hoverfeeding in front of a visual barrier restricted stroke amplitude and elicited increased stroke frequencies together with in-plane and out-of-plane deformations throughout the stroke cycle. Lifting submaximal loads increased stroke amplitudes at similar stroke frequencies together with prominent in-plane deformations during the upstroke and pronation. Our study highlights how spatially and temporally distinct changes in wing shape can contribute to agile fluidic locomotion.


Asunto(s)
Aves , Vuelo Animal , Alas de Animales , Animales , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Aves/fisiología , Aves/anatomía & histología , Fenómenos Biomecánicos , Vuelo Animal/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-37542566

RESUMEN

Avian flight is guided by optic flow-the movement across the retina of images of surfaces and edges in the environment due to self-motion. In all vertebrates, there is a short pathway for optic flow information to reach pre-motor areas: retinal-recipient regions in the midbrain encode optic flow, which is then sent to the cerebellum. One well-known role for optic flow pathways to the cerebellum is the control of stabilizing eye movements (the optokinetic response). However, the role of this pathway in controlling locomotion is less well understood. Electrophysiological and tract tracing studies are revealing the functional connectivity of a more elaborate circuit through the avian cerebellum, which integrates optic flow with other sensory signals. Here we review the research supporting this framework and identify the cerebellar output centres, the lateral (CbL) and medial (CbM) cerebellar nuclei, as two key nodes with potentially distinct roles in flight control. The CbM receives bilateral optic flow information and projects to sites in the brainstem that suggest a primary role for flight control over time, such as during forward flight. The CbL receives monocular optic flow and other types of visual information. This site provides feedback to sensory areas throughout the brain and has a strong projection the nucleus ruber, which is known to have a dominant role in forelimb muscle control. This arrangement suggests primary roles for the CbL in the control of wing morphing and for rapid maneuvers.


Asunto(s)
Flujo Optico , Animales , Mesencéfalo , Tronco Encefálico , Encéfalo , Aves , Locomoción
4.
J Neurophysiol ; 127(1): 130-144, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851761

RESUMEN

Optokinetic responses function to maintain retinal image stabilization by minimizing optic flow that occurs during self-motion. The hovering ability of hummingbirds is an extreme example of this behavior. Optokinetic responses are mediated by direction-selective neurons with large receptive fields in the accessory optic system (AOS) and pretectum. Recent studies in hummingbirds showed that, compared with other bird species, 1) the pretectal nucleus lentiformis mesencephali (LM) is hypertrophied, 2) LM has a unique distribution of direction preferences, and 3) LM neurons are more tightly tuned to stimulus velocity. In this study, we sought to determine if there are concomitant changes in the nucleus of the basal optic root (nBOR) of the AOS. We recorded the visual response properties of nBOR neurons to large-field-drifting random dot patterns and sine-wave gratings in Anna's hummingbirds and zebra finches and compared these with archival data from pigeons. We found no differences with respect to the distribution of direction preferences: Neurons responsive to upward, downward, and nasal-to-temporal motion were equally represented in all three species, and neurons responsive to temporal-to-nasal motion were rare or absent (<5%). Compared with zebra finches and pigeons, however, hummingbird nBOR neurons were more tightly tuned to stimulus velocity of random dot stimuli. Moreover, in response to drifting gratings, hummingbird nBOR neurons are more tightly tuned in the spatiotemporal domain. These results, in combination with specialization in LM, support a hypothesis that hummingbirds have evolved to be "optic flow specialists" to cope with the optomotor demands of sustained hovering flight.NEW & NOTEWORTHY Hummingbirds have specialized response properties to optic flow in the pretectal nucleus lentiformis mesencephali (LM). The LM works with the nucleus of the basal optic root (nBOR) of the accessory optic system (AOS) to process global visual motion, but whether the neural response specializations observed in the LM extend to the nBOR is unknown. Hummingbird nBOR neurons are more tightly tuned to visual stimulus velocity, and in the spatiotemporal domain, compared with two nonhovering species.


Asunto(s)
Aves/fisiología , Mesencéfalo/fisiología , Percepción de Movimiento/fisiología , Neuronas/fisiología , Flujo Optico/fisiología , Reconocimiento Visual de Modelos/fisiología , Animales , Conducta Animal/fisiología , Columbidae/fisiología , Pinzones/fisiología , Técnicas de Placa-Clamp , Área Pretectal/fisiología , Especificidad de la Especie
5.
J Exp Biol ; 223(Pt 21)2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046567

RESUMEN

Birds that use high flapping frequencies can modulate aerodynamic force by varying wing velocity, which is primarily a function of stroke amplitude and wingbeat frequency. Previous measurements from zebra finches (Taeniopygia guttata) flying across a range of speeds in a wind tunnel demonstrate that although the birds modulated both wingbeat kinematic parameters, they exhibited greater changes in stroke amplitude. These two kinematic parameters contribute equally to aerodynamic force, so the preference for modulating amplitude over frequency may instead derive from limitations of muscle physiology at high frequency. We tested this hypothesis by developing a novel in situ work loop approach to measure muscle force and power output from the whole pectoralis major of zebra finches. This method allowed for multiple measurements over several hours without significant degradation in muscle power. We explored the parameter space of stimulus, strain amplitude and cycle frequencies measured previously from zebra finches, which revealed overall high net power output of the muscle, despite substantial levels of counter-productive power during muscle lengthening. We directly compared how changes to muscle shortening velocity via strain amplitude and cycle frequency affected muscle power. Increases in strain amplitude led to increased power output during shortening with little to no change in power output during lengthening. In contrast, increases in cycle frequency did not lead to increased power during shortening but instead increased counter-productive power during lengthening. These results demonstrate why at high wingbeat frequency, increasing wing stroke amplitude could be a more effective mechanism to cope with increased aerodynamic demands.


Asunto(s)
Pinzones , Vuelo Animal , Animales , Fenómenos Biomecánicos , Músculos Pectorales , Alas de Animales
6.
J Exp Biol ; 222(Pt 7)2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30890622

RESUMEN

Control of wing shape is believed to be a key feature that allows most birds to produce aerodynamically efficient flight behaviors and high maneuverability. Anatomical organization of intrinsic wing muscles suggests specific roles for the different motor elements in wing shape modulation, but testing these hypothesized functions requires challenging measurements of muscle activation and strain patterns, and force dynamics. The wing muscles that have been best characterized during flight are the elbow muscles of the pigeon (Columba livia). In vivo studies during different flight modes revealed variation in strain profile, activation timing and duration, and contractile cycle frequency of the humerotriceps, suggesting that this muscle may alter wing shape in diverse ways. To examine the multifunction potential of the humerotriceps, we developed an in situ work loop approach to measure how activation duration and contractile cycle frequency affected muscle work and power across the full range of activation onset times. The humerotriceps produced predominantly net negative power, likely due to relatively long stimulus durations, indicating that it absorbs work, but the work loop shapes also suggest varying degrees of elastic energy storage and release. The humerotriceps consistently exhibited positive and negative instantaneous power within a single contractile cycle, across all treatments. When combined with previous in vivo studies, our results indicate that both within and across contractile cycles, the humerotriceps can dynamically shift among roles of actuator, brake, and stiff or compliant spring, based on activation properties that vary with flight mode.


Asunto(s)
Columbidae/fisiología , Vuelo Animal/fisiología , Alas de Animales/fisiología , Animales , Fenómenos Biomecánicos , Columbidae/anatomía & histología , Femenino , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Alas de Animales/anatomía & histología
7.
Proc Natl Acad Sci U S A ; 113(31): 8849-54, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432982

RESUMEN

Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.


Asunto(s)
Aves/fisiología , Vuelo Animal/fisiología , Flujo Optico/fisiología , Campos Visuales/fisiología , Algoritmos , Altitud , Animales , Ambiente , Masculino , Modelos Biológicos , Movimiento (Física) , Visión Ocular/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-29340763

RESUMEN

In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are retinal recipient nuclei involved in the analysis of optic flow and the generation of the optokinetic response. In both pigeons and chickens, retinal inputs to the nBOR arise from displaced ganglion cells (DGCs), which are found at the margin of the inner nuclear and inner plexiform layers. The LM receives afferents from retinal ganglion cells, but whether DGCs also project to LM is a matter of debate. Previous work in chickens had concluded that DGCs do not project to LM, but a recent study in pigeons found that both retinal ganglion cells and DGCs project to LM. These findings leave open the question of whether there are species differences with respect to the DGC projection to LM. In the present study, we made small injections of retrograde tracer into the LM in a zebra finch and an Anna's hummingbird. In both cases, retrogradely labeled retinal ganglion cells and DGCs were observed. These results suggest that a retinal input to the LM arising from DGCs is characteristic of most, if not all, birds.


Asunto(s)
Aves/anatomía & histología , Aves/fisiología , Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/fisiología , Retina/anatomía & histología , Retina/fisiología , Animales , Masculino , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/citología , Neuronas/fisiología , Vías Visuales/anatomía & histología , Vías Visuales/fisiología , Percepción Visual/fisiología
9.
Proc Natl Acad Sci U S A ; 111(51): 18375-80, 2014 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489117

RESUMEN

Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.


Asunto(s)
Aves/fisiología , Vuelo Animal , Movimiento (Física) , Visión Ocular , Animales
10.
Am J Bot ; 101(7): 1079-1084, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25016005

RESUMEN

• Premise of the study: Most seed dispersal studies focus on the spatial aspects of propagule dissemination, i.e., the movement of seeds away from the mother plant. However, the timing of seed release can also be a critical variable influencing the probability of seedling survival. We used a biomechanical approach to analyze seed release in Chorizanthe rigida, a serotinous desert annual, to understand the adaptive significance of seed retention in this species.• Methods: We performed pull-to-break tests on individual propagules (i.e., involucres and achene) from newly developed and older plants, under dry and wet conditions, and recorded the breaking force. We measured the involucral base area using digital images and image processing software.• Key results: There is a positive correlation between the force required to detach an involucre and the size of its base area. The force required to detach involucres from soaked and older plants was lower than that for dry and new plants. This pattern provides a mechanism for the plant to regulate the number of involucres released in different rain events.• Conclusions: Seed release in C. rigida is mediated by propagule morphology, rainfall conditions, and age of the dry plant. These factors allow this species to cope with desert environmental variability by influencing the timing and number of seeds released.

11.
J Comp Neurol ; 532(2): e25556, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37938923

RESUMEN

Birds have a comprehensive network of sensorimotor projections extending from the forebrain and midbrain to the cerebellum via the pontine nuclei, but the organization of these circuits in the pons is not thoroughly described. Inputs to the pontine nuclei include two retinorecipient areas, nucleus lentiformis mesencephali (LM) and nucleus of the basal optic root (nBOR), which are important structures for analyzing optic flow. Other crucial regions for visuomotor control include the retinorecipient ventral lateral geniculate nucleus (GLv), and optic tectum (TeO). These visual areas, together with the somatosensory area of the anterior (rostral) Wulst, which is homologous to the primary somatosensory cortex in mammals, project to the medial and lateral pontine nuclei (PM, PL). In this study, we used injections of fluorescent tracers to study the organization of these visual and somatosensory inputs to the pontine nuclei in zebra finches. We found a topographic organization of inputs to PM and PL. The PM has a lateral subdivision that predominantly receives projections from the ipsilateral anterior Wulst. The medial PM receives bands of inputs from the ipsilateral GLv and the nucleus laminaris precommisulis, located medial to LM. We also found that the lateral PL receives a strong ipsilateral projection from TeO, while the medial PL and region between the PM and PL receive less prominent projections from nBOR, bilaterally. We discuss these results in the context of the organization of pontine inputs to the cerebellum and possible functional implications of diverse somato-motor and visuomotor inputs and parcellation in the pontine nuclei.


Asunto(s)
Pinzones , Vías Visuales , Animales , Colículos Superiores , Puente , Cerebelo , Mamíferos
12.
J Exp Biol ; 216(Pt 12): 2247-56, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23580719

RESUMEN

Hummingbird flight muscle is estimated to have among the highest mass-specific power output among vertebrates, based on aerodynamic models. However, little is known about the fundamental contractile properties of their remarkable flight muscles. We hypothesized that hummingbird pectoralis fibers generate relatively low force when activated in a tradeoff for high shortening speeds associated with the characteristic high wingbeat frequencies that are required for sustained hovering. Our objective was to measure maximal force-generating ability (maximal force/cross-sectional area, Po/CSA) in single, skinned fibers from the pectoralis and supracoracoideus muscles, which power the wing downstroke and upstroke, respectively, in hummingbirds (Calypte anna) and in another similarly sized species, zebra finch (Taeniopygia guttata), which also has a very high wingbeat frequency during flight but does not perform a sustained hover. Mean Po/CSA in hummingbird pectoralis fibers was very low - 1.6, 6.1 and 12.2 kN m(-2), at 10, 15 and 20°C, respectively. Po/CSA in finch pectoralis fibers was also very low (for both species, ~5% of the reported Po/CSA of chicken pectoralis fast fibers at 15°C). Q10-force (force generated at 20°C/force generated at 10°C) was very high for hummingbird and finch pectoralis fibers (mean=15.3 and 11.5, respectively) compared with rat slow and fast fibers (1.8 and 1.9, respectively). Po/CSA in hummingbird leg fibers was much higher than in pectoralis fibers at each temperature, and the mean Q10-force was much lower. Thus, hummingbird and finch pectoralis fibers have an extremely low force-generating ability compared with other bird and mammalian limb fibers, and an extremely high temperature dependence of force generation. However, the extrapolated maximum force-generating ability of hummingbird pectoralis fibers in vivo (~48 kN m(-2)) is substantially higher than the estimated requirements for hovering flight of C. anna. The unusually low Po/CSA of hummingbird and zebra finch pectoralis fibers may reflect a constraint imposed by a need for extremely high contraction frequencies, especially during hummingbird hovering.


Asunto(s)
Aves/fisiología , Vuelo Animal , Fibras Musculares Esqueléticas/fisiología , Músculos Pectorales/fisiología , Animales , Contracción Muscular , Ratas/fisiología , Ratas Sprague-Dawley , Pájaros Cantores/fisiología , Temperatura
13.
J Comp Neurol ; 531(6): 640-662, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36648211

RESUMEN

In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are brainstem nuclei involved in the analysis of optic flow. A major projection site of both nBOR and LM is the medial column of the inferior olive (IO), which provides climbing fibers to the vestibulocerebellum. This pathway has been well documented in pigeons, but not other birds. Recent works have highlighted that zebra finches show specializations with respect to optic flow processing, which may be reflected in the organization of optic flow pathways to the IO. In this study, we characterized the organization of these pathways in zebra finches. We found that the medial column consists of at least eight subnuclei (i-viii) visible in Nissl-stained tissue. Using anterograde traces we found that the projections from LM and nBOR to the IO were bilateral, but heavier to the ipsilateral side, and showed a complementary pattern: LM projected to subnucleus i, whereas nBOR projected to subnuclei ii and v. Using retrograde tracers, we found that these subnuclei (i, ii and v) projected to the vestibulocerebellum (folia IXcd and X), whereas the other subnuclei projected to IXab and the lateral margin of VII and VIII. The nBOR also projected ipsilaterally to the caudo-medial dorsal lamella of the IO, which the retrograde experiments showed as projecting to the medial margin of VII and VIII. We compare these results with previous studies in other avian species.


Asunto(s)
Pinzones , Flujo Optico , Animales , Vías Visuales , Columbidae , Cerebelo , Núcleo Olivar
14.
Science ; 379(6628): 185-190, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36634192

RESUMEN

Hummingbirds possess distinct metabolic adaptations to fuel their energy-demanding hovering flight, but the underlying genomic changes are largely unknown. Here, we generated a chromosome-level genome assembly of the long-tailed hermit and screened for genes that have been specifically inactivated in the ancestral hummingbird lineage. We discovered that FBP2 (fructose-bisphosphatase 2), which encodes a gluconeogenic muscle enzyme, was lost during a time period when hovering flight evolved. We show that FBP2 knockdown in an avian muscle cell line up-regulates glycolysis and enhances mitochondrial respiration, coincident with an increased mitochondria number. Furthermore, genes involved in mitochondrial respiration and organization have up-regulated expression in hummingbird flight muscle. Together, these results suggest that FBP2 loss was likely a key step in the evolution of metabolic muscle adaptations required for true hovering flight.


Asunto(s)
Adaptación Fisiológica , Aves , Vuelo Animal , Fructosa-Bifosfatasa , Gluconeogénesis , Músculo Esquelético , Animales , Aves/genética , Aves/metabolismo , Metabolismo Energético/genética , Vuelo Animal/fisiología , Gluconeogénesis/genética , Adaptación Fisiológica/genética , Fructosa-Bifosfatasa/genética , Músculo Esquelético/enzimología
15.
J Exp Biol ; 215(Pt 23): 4070-84, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22933610

RESUMEN

The biomechanical and neuromuscular mechanisms used by different animals to generate turns in flight are highly variable. Body size and body plan exert some influence, e.g. birds typically roll their body to orient forces generated by the wings whereas insects are capable of turning via left-right wingbeat asymmetries. Turns are also relatively brief and have low repeatability, with almost every wingbeat serving a different function throughout the change in heading. Here we present an analysis of Anna's hummingbirds (Calypte anna) as they fed continuously from an artificial feeder revolving around the outside of the animal. This setup allowed for examination of sustained changes in yaw without requiring any corresponding changes in pitch, roll or body position. Hummingbirds sustained yaw turns by expanding the wing stroke amplitude of the outer wing during the downstroke and by altering the deviation of the wingtip path during both downstroke and upstroke. The latter led to a shift in the inner-outer stroke plane angle during the upstroke and shifts in the elevation of the stroke plane and in the deviation of the wingtip path during both strokes. These features are generally more similar to how insects, as opposed to birds, turn. However, time series analysis also revealed considerable stroke-to-stroke variation. Changes in the stroke amplitude and the wingtip velocity were highly cross-correlated, as were changes in the stroke deviation and the elevation of the stroke plane. As was the case for wingbeat kinematics, electromyogram recordings from pectoral and wing muscles were highly variable, but no correlations were found between these two features of motor control. The high variability of both kinematic and muscle activation features indicates a high level of wingbeat-to-wingbeat adjustments during sustained yaw. The activation timing of the muscles was more repeatable than the activation intensity, which suggests that the former may be constrained by harmonic motion and that the latter may play a large role in kinematic adjustments. Comparing the revolution frequency of the feeder with measurements of free flight yaws reveals that feeder tracking, even at one revolution every 2 s, is well below the maximum yaw capacity of the hummingbirds.


Asunto(s)
Aves/fisiología , Vuelo Animal , Actividad Motora , Músculo Esquelético/fisiología , Alas de Animales/fisiología , Análisis de Varianza , Animales , Fenómenos Biomecánicos , California , Electromiografía , Masculino , Músculos Pectorales/fisiología , Análisis de Componente Principal , Factores de Tiempo , Grabación en Video
16.
Curr Biol ; 32(12): 2772-2779.e4, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35609607

RESUMEN

All visual animals experience optic flow-global visual motion across the retina, which is used to control posture and movement.1 The midbrain circuitry for optic flow is highly conserved in vertebrates,2-6 and these neurons show similar response properties across tetrapods.4,7-16 These neurons have large receptive fields and exhibit both direction and velocity selectivity in response to large moving stimuli. Hummingbirds deviate from the typical vertebrate pattern in several respects.17,18 Their lentiformis mesencephali (LM) lacks the directional bias seen in other tetrapods and has an overall bias for faster velocities. This led Ibbotson19 to suggest that the hummingbird LM may be specialized for hovering close to visual structures, such as plants. In such an environment, even slight body motions will translate into high-velocity optic flow. A prediction from this hypothesis is that hummingbird LM neurons should be more responsive to large visual features. We tested this hypothesis by measuring neural responses of hummingbirds and zebra finches to sine wave gratings of varying spatial and temporal frequencies. As predicted, the hummingbird LM displayed an overall preference for fast optic flow because neurons were biased to lower spatial frequencies. These neurons were also tightly tuned in the spatiotemporal domain. We found that the zebra finch LM specializes along another domain: many neurons were initially tuned to high temporal frequencies followed by a shift in location and orientation to slower velocity tuning. Collectively, these results demonstrate that the LM has distinct and specialized tuning properties in at least two bird species.


Asunto(s)
Pinzones , Percepción de Movimiento , Flujo Optico , Área Pretectal , Animales , Movimiento (Física) , Percepción de Movimiento/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Vías Visuales/fisiología
17.
J R Soc Interface ; 18(184): 20201042, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34727709

RESUMEN

Skeletal muscle provides a compact solution for performing multiple tasks under diverse operational conditions, a capability lacking in many current engineered systems. Here, we evaluate if shape memory alloy (SMA) components can serve as artificial muscles with tunable mechanical performance. We experimentally impose cyclic stimuli, electric and mechanical, to an SMA wire and demonstrate that this material can mimic the response of the avian humerotriceps, a skeletal muscle that acts in the dynamic control of wing shapes. We next numerically evaluate the feasibility of using SMA springs as artificial leg muscles for a bipedal walking robot. Altering the phase offset between mechanical and electrical stimuli was sufficient for both synthetic and natural muscle to shift between actuation, braking and spring-like behaviour.


Asunto(s)
Músculo Esquelético , Alas de Animales , Animales
18.
J Exp Biol ; 213(Pt 14): 2507-14, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20581280

RESUMEN

Hummingbirds can maintain the highest wingbeat frequencies of any flying vertebrate - a feat accomplished by the large pectoral muscles that power the wing strokes. An unusual feature of these muscles is that they are activated by one or a few spikes per cycle as revealed by electromyogram recordings (EMGs). The relatively simple nature of this activation pattern provides an opportunity to understand how motor units are recruited to modulate limb kinematics. Hummingbirds made to fly in low-density air responded by moderately increasing wingbeat frequency and substantially increasing the wing stroke amplitude as compared with flight in normal air. There was little change in the number of spikes per EMG burst in the pectoralis major muscle between flight in normal and low-density heliox (mean=1.4 spikes cycle(-1)). However the spike amplitude, which we take to be an indication of the number of active motor units, increased in concert with the wing stroke amplitude, 1.7 times the value in air. We also challenged the hummingbirds using transient load lifting to elicit maximum burst performance. During maximum load lifting, both wing stroke amplitude and wingbeat frequency increased substantially above those values during hovering flight. The number of spikes per EMG burst increased to a mean of 3.3 per cycle, and the maximum spike amplitude increased to approximately 1.6 times those values during flight in heliox. These results suggest that hummingbirds recruit additional motor units (spatial recruitment) to regulate wing stroke amplitude but that temporal recruitment is also required to maintain maximum stroke amplitude at the highest wingbeat frequencies.


Asunto(s)
Aves/fisiología , Vuelo Animal/fisiología , Reclutamiento Neurofisiológico/fisiología , Alas de Animales/fisiología , Potenciales de Acción/fisiología , Animales , Fenómenos Biomecánicos , Aves/anatomía & histología , Electromiografía , Masculino , Neuronas Motoras/fisiología , Músculos Pectorales/inervación , Músculos Pectorales/fisiología , Periodicidad
19.
Brain Behav Evol ; 76(1): 11-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20798485

RESUMEN

The organization of the dorsal horn in the avian spinal cord differs in different species. For instance, in pigeons and doves, cranes, cuckoos, songbirds, ratites and tinamous, the dorsal horn is organized in laminar fashion, such that laminae II and III are sandwiched between lamina I dorsally and lamina IV ventrally, as they are in mammals and other nonavian amniotes. In most other avian species, including chickens, however, the organization of the dorsal horn is not strictly laminar, in that the structures homologous to laminae II and III lie side by side rather than in dorsoventral order. Because spinal and trigeminal dorsal horns are generally thought to be continuous, the question arises as to the organization of the trigeminal dorsal horn in these species. We examined this question in chickens, first by defining II and III of trigeminal and spinal dorsal horns using calcium-binding protein immunohistochemistry, and second by determining the caudal extent of the projections of the three branches of the trigeminal nerve using injections of cholera toxin B chain. It was found (1) that the trigeminal dorsal horn and the spinal dorsal horn of the first 2 cervical segments are organized in laminar fashion, but further caudally, II and III in the spinal dorsal horn gradually come to be arranged side by side and (2) that the descending trigeminal tract terminates no further caudal than the 3rd spinal segment. Therefore, unlike spinal nerves, trigeminal nerve branches do not project to II and III, once these cease to be organized in laminar fashion. These findings imply some kind or organizational discontinuity of trigeminal and spinal dorsal horns in the chicken and perhaps in other species with a side-by-side arrangement of II and III. It has also been suggested that the condition in which the spinal dorsal horn structures homologous to laminae II and II lie side by side may define a novel clade of birds. This suggestion was reexamined within the context of a modern phylogenetic framework based on 32 kb of nuclear DNA, and using a parsimony reconstruction of dorsal horn character states. The original suggestion of a novel clade was not supported. Instead, it appears that the side-by-side condition evolved very early in the radiation of Aves and that independent reversion to a laminar dorsal horn condition has evolved at least 4-5 times.


Asunto(s)
Evolución Biológica , Pollos/anatomía & histología , Células del Asta Posterior/fisiología , Médula Espinal/citología , Nervio Trigémino/citología , Animales , Calbindinas , Toxina del Cólera/metabolismo , Masculino , Vías Nerviosas/anatomía & histología , Proteína G de Unión al Calcio S100/metabolismo
20.
Curr Biol ; 30(3): R103-R105, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32017874

RESUMEN

Hummingbirds are widely recognized by their hovering flight. In this Quick guide, Altshuler and Wylie describe the visual specializations that allow for the hummingbird's flight abilities.


Asunto(s)
Aves/fisiología , Vuelo Animal , Visión Ocular , Percepción Visual , Animales , Fenómenos Biomecánicos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA