Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 311(1): 151-176, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35909230

RESUMEN

Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.


Asunto(s)
Linfocitos T CD4-Positivos , Enfermedades Neuroinflamatorias , Autoinmunidad , Sistema Nervioso Central , Humanos , Linfocitos T Reguladores
2.
J Clin Immunol ; 44(4): 87, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578402

RESUMEN

We present a case study of a young male with a history of 22q11.2 deletion syndrome (22qDS), diagnosed with systemic capillary leak syndrome (SCLS) who presented with acute onset of diffuse anasarca and sub-comatose obtundation. We hypothesized that his co-presentation of neurological sequelae might be due to blood-brain barrier (BBB) susceptibility conferred by the 22q11.2 deletion, a phenotype that we have previously identified in 22qDS. Using pre- and post-intravenous immunoglobulins (IVIG) patient serum, we studied circulating biomarkers of inflammation and assessed the potential susceptibility of the 22qDS BBB. We employed in vitro cultures of differentiated BBB-like endothelial cells derived from a 22qDS patient and a healthy control. We found evidence of peripheral inflammation and increased serum lipopolysaccharide (LPS) alongside endothelial cells in circulation. We report that the patient's serum significantly impairs barrier function of the 22qDS BBB compared to control. Only two other cases of pediatric SCLS with neurologic symptoms have been reported, and genetic risk factors have been suggested in both instances. As the third case to be reported, our findings are consistent with the hypothesis that genetic susceptibility of the BBB conferred by genes such as claudin-5 deleted in the 22q11.2 region promoted neurologic involvement during SCLS in this patient.


Asunto(s)
Síndrome de Fuga Capilar , Síndrome de DiGeorge , Humanos , Masculino , Niño , Síndrome de Fuga Capilar/diagnóstico , Barrera Hematoencefálica , Células Endoteliales , Permeabilidad , Inflamación
3.
Eur J Immunol ; 53(1): e2249840, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36337041

RESUMEN

Mice modeling the hemizygous deletion of chromosome 22q11.2 (22qMc) have been utilized to address various clinical phenotypes associated with the disease, including cardiac malformations, altered neural circuitry, and behavioral deficits. Yet, the status of the T cell compartment, an important clinical concern among 22q11.2 deletion syndrome (22qDS) patients, has not been addressed. While infancy and early childhood in 22qDS are associated with deficient T cell numbers and thymic hypoplasia, which can be severe in a small subset of patients, studies suggest normalization of the T cell counts by adulthood. We found that adult 22qMc do not exhibit thymic hypoplasia or altered thymic T cell development. Our findings that immune cell counts and inflammatory T cell activation are unaffected in 22qMc lend support to the hypothesis that human 22qDS immunodeficiencies are secondary to thymic hypoplasia, rather than intrinsic effects due to the deletion. Furthermore, the 22q11.2 deletion does not impact the differentiation capacity of T cells, nor their activity and response during inflammatory activation. Thus, 22qMc reflects the T cell compartment in adult 22qDS patients, and our findings suggest that 22qMc may serve as a novel model to address experimental and translational aspects of immunity in 22qDS.


Asunto(s)
Síndrome de DiGeorge , Síndromes de Inmunodeficiencia , Humanos , Preescolar , Adulto , Ratones , Animales , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/complicaciones , Deleción Cromosómica , Timo , Síndromes de Inmunodeficiencia/genética , Linfocitos T
4.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810256

RESUMEN

Global inactivation of IκB kinase (IKK)-α results in defective lymph node (LN) formation and B cell maturation, and loss of IKK-α-dependent noncanonical NF-κB signaling in stromal organizer and hematopoietic cells is thought to underlie these distinct defects. We previously demonstrated that this pathway is also activated in vascular endothelial cells (ECs). To determine the physiologic function of EC-intrinsic IKK-α, we crossed IkkαF/F mice with Tie2-cre or Cdh5-cre mice to ablate IKK-α in ECs. Notably, the compound defects of global IKK-α inactivation were recapitulated in IkkαTie2 and IkkαCdh5 mice, as both lacked all LNs and mature follicular and marginal zone B cell numbers were markedly reduced. However, as Tie2-cre and Cdh5-cre are expressed in all ECs, including blood forming hemogenic ECs, IKK-α was also absent in hematopoietic cells (HC). To determine if loss of HC-intrinsic IKK-α affected LN development, we generated IkkαVav mice lacking IKK-α in only the hematopoietic compartment. While mature B cell numbers were significantly reduced in IkkαVav mice, LN formation was intact. As lymphatic vessels also arise during development from blood ECs, we generated IkkαLyve1 mice lacking IKK-α in lymphatic ECs (LECs) to determine if IKK-α in lymphatic vessels impacts LN development. Strikingly, while mature B cell numbers were normal, LNs were completely absent in IkkαLyve1 mice. Thus, our findings reveal that IKK-α in distinct EC-derived compartments is uniquely required to promote B cell homeostasis and LN development, and we establish that LEC-intrinsic IKK-α is absolutely essential for LN formation.


Asunto(s)
Linfocitos B/metabolismo , Quinasa I-kappa B/fisiología , Ganglios Linfáticos/metabolismo , Animales , Linfocitos B/fisiología , Línea Celular , Células Endoteliales/metabolismo , Femenino , Homeostasis/fisiología , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Ganglios Linfáticos/fisiología , Tejido Linfoide/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Organogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Immunol ; 207(1): 44-54, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34162727

RESUMEN

Multiple sclerosis (MS) is an idiopathic demyelinating disease in which meningeal inflammation correlates with accelerated disease progression. The study of meningeal inflammation in MS has been limited because of constrained access to MS brain/spinal cord specimens and the lack of experimental models recapitulating progressive MS. Unlike induced models, a spontaneously occurring model would offer a unique opportunity to understand MS immunopathogenesis and provide a compelling framework for translational research. We propose granulomatous meningoencephalomyelitis (GME) as a natural model to study neuropathological aspects of MS. GME is an idiopathic, progressive neuroinflammatory disease of young dogs with a female bias. In the GME cases examined in this study, the meninges displayed focal and disseminated leptomeningeal enhancement on magnetic resonance imaging, which correlated with heavy leptomeningeal lymphocytic infiltration. These leptomeningeal infiltrates resembled tertiary lymphoid organs containing large B cell clusters that included few proliferating Ki67+ cells, plasma cells, follicular dendritic/reticular cells, and germinal center B cell-like cells. These B cell collections were confined in a specialized network of collagen fibers associated with the expression of the lympho-organogenic chemokines CXCL13 and CCL21. Although neuroparenchymal perivascular infiltrates contained B cells, they lacked the immune signature of aggregates in the meningeal compartment. Finally, meningeal B cell accumulation correlated significantly with cortical demyelination reflecting neuropathological similarities to MS. Hence, during chronic neuroinflammation, the meningeal microenvironment sustains B cell accumulation that is accompanied by underlying neuroparenchymal injury, indicating GME as a novel, naturally occurring model to study compartmentalized neuroinflammation and the associated pathology thought to contribute to progressive MS.


Asunto(s)
Linfocitos B/inmunología , Modelos Animales de Enfermedad , Meninges/inmunología , Esclerosis Múltiple Crónica Progresiva/inmunología , Animales , Linfocitos B/patología , Perros , Meninges/patología , Esclerosis Múltiple Crónica Progresiva/patología
6.
Brain ; 144(6): 1670-1683, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33723591

RESUMEN

The concerted actions of the CNS and the immune system are essential to coordinating the outcome of neuroinflammatory responses. Yet, the precise mechanisms involved in this crosstalk and their contribution to the pathophysiology of neuroinflammatory diseases largely elude us. Here, we show that the CNS-endogenous hedgehog pathway, a signal triggered as part of the host response during the inflammatory phase of multiple sclerosis and experimental autoimmune encephalomyelitis, attenuates the pathogenicity of human and mouse effector CD4 T cells by regulating their production of inflammatory cytokines. Using a murine genetic model, in which the hedgehog signalling is compromised in CD4 T cells, we show that the hedgehog pathway acts on CD4 T cells to suppress the pathogenic hallmarks of autoimmune neuroinflammation, including demyelination and axonal damage, and thus mitigates the development of experimental autoimmune encephalomyelitis. Impairment of hedgehog signalling in CD4 T cells exacerbates brain-brainstem-cerebellum inflammation and leads to the development of atypical disease. Moreover, we present evidence that hedgehog signalling regulates the pathogenic profile of CD4 T cells by limiting their production of the inflammatory cytokines granulocyte-macrophage colony-stimulating factor and interferon-γ and by antagonizing their inflammatory program at the transcriptome level. Likewise, hedgehog signalling attenuates the inflammatory phenotype of human CD4 memory T cells. From a therapeutic point of view, our study underlines the potential of harnessing the hedgehog pathway to counteract ongoing excessive CNS inflammation, as systemic administration of a hedgehog agonist after disease onset effectively halts disease progression and significantly reduces neuroinflammation and the underlying neuropathology. We thus unveil a previously unrecognized role for the hedgehog pathway in regulating pathogenic inflammation within the CNS and propose to exploit its ability to modulate this neuroimmune network as a strategy to limit the progression of ongoing neuroinflammation.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Proteínas Hedgehog/inmunología , Inflamación/inmunología , Animales , Encéfalo/inmunología , Encéfalo/patología , Linfocitos T CD4-Positivos/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Proteínas Hedgehog/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Médula Espinal/inmunología , Médula Espinal/patología
7.
Brain ; 144(5): 1351-1360, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33876226

RESUMEN

Neuroimmune dysregulation is implicated in neuropsychiatric disorders including schizophrenia. As the blood-brain barrier is the immunological interface between the brain and the periphery, we investigated whether this vascular phenotype is intrinsically compromised in the most common genetic risk factor for schizophrenia, the 22q11.2 deletion syndrome (22qDS). Blood-brain barrier like endothelium differentiated from human 22qDS+schizophrenia-induced pluripotent stem cells exhibited impaired barrier integrity, a phenotype substantiated in a mouse model of 22qDS. The proinflammatory intercellular adhesion molecule-1 was upregulated in 22qDS+schizophrenia-induced blood-brain barrier and in 22qDS mice, indicating compromise of the blood-brain barrier immune privilege. This immune imbalance resulted in increased migration/activation of leucocytes crossing the 22qDS+schizophrenia blood-brain barrier. We also found heightened astrocyte activation in murine 22qDS, suggesting that the blood-brain barrier promotes astrocyte-mediated neuroinflammation. Finally, we substantiated these findings in post-mortem 22qDS brain tissue. Overall, the barrier-promoting and immune privilege properties of the 22qDS blood-brain barrier are compromised, and this might increase the risk for neuropsychiatric disease.


Asunto(s)
Síndrome de Deleción 22q11/patología , Barrera Hematoencefálica/patología , Síndrome de Deleción 22q11/inmunología , Animales , Astrocitos/metabolismo , Humanos , Privilegio Inmunológico/fisiología , Inflamación/metabolismo , Ratones
8.
Brain ; 139(Pt 7): 1939-57, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27246324

RESUMEN

SEE WINGER AND ZAMVIL DOI101093/BRAIN/AWW121 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The innate immune system plays a central role in the chronic central nervous system inflammation that drives neurological disability in progressive forms of multiple sclerosis, for which there are no effective treatments. The mucosal immune system is a unique tolerogenic organ that provides a physiological approach for the induction of regulatory T cells. Here we report that nasal administration of CD3-specific antibody ameliorates disease in a progressive animal model of multiple sclerosis. This effect is IL-10-dependent and is mediated by the induction of regulatory T cells that share a similar transcriptional profile to Tr1 regulatory cells and that suppress the astrocyte inflammatory transcriptional program. Treatment results in an attenuated inflammatory milieu in the central nervous system, decreased microglia activation, reduced recruitment of peripheral monocytes, stabilization of the blood-brain barrier and less neurodegeneration. These findings suggest a new therapeutic approach for the treatment of progressive forms of multiple sclerosis and potentially other types of chronic central nervous system inflammation.


Asunto(s)
Astrocitos/inmunología , Complejo CD3/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Factores Inmunológicos/farmacología , Interleucina-10/inmunología , Muromonab-CD3/farmacología , Linfocitos T Reguladores/inmunología , Administración Intranasal , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Factores Inmunológicos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Muromonab-CD3/administración & dosificación , Neumonía Neumocócica/inmunología
9.
J Immunol ; 193(5): 2438-54, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25049355

RESUMEN

Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.


Asunto(s)
Barrera Hematoencefálica/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Neutrófilos/inmunología , Médula Espinal/inmunología , Animales , Barrera Hematoencefálica/patología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Ratones , Ratones Transgénicos , Neuromielitis Óptica/genética , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/patología , Neutrófilos/patología , Médula Espinal/patología
10.
Brain ; 138(Pt 6): 1598-612, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25903786

RESUMEN

Blood-brain barrier function is driven by the influence of astrocyte-secreted factors. During neuroinflammatory responses the blood-brain barrier is compromised resulting in central nervous system damage and exacerbated pathology. Here, we identified endothelial netrin 1 induction as a vascular response to astrocyte-derived sonic hedgehog that promotes autocrine barrier properties during homeostasis and increases with inflammation. Netrin 1 supports blood-brain barrier integrity by upregulating endothelial junctional protein expression, while netrin 1 knockout mice display disorganized tight junction protein expression and barrier breakdown. Upon inflammatory conditions, blood-brain barrier endothelial cells significantly upregulated netrin 1 levels in vitro and in situ, which prevented junctional breach and endothelial cell activation. Finally, netrin 1 treatment during experimental autoimmune encephalomyelitis significantly reduced blood-brain barrier disruption and decreased clinical and pathological indices of disease severity. Our results demonstrate that netrin 1 is an important regulator of blood-brain barrier maintenance that protects the central nervous system against inflammatory conditions such as multiple sclerosis and experimental autoimmune encephalomyelitis.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación/metabolismo , Esclerosis Múltiple/metabolismo , Factores de Crecimiento Nervioso/fisiología , Factores de Crecimiento Nervioso/uso terapéutico , Proteínas Supresoras de Tumor/fisiología , Proteínas Supresoras de Tumor/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas Sanguíneas/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Netrina-1 , Permeabilidad , Cultivo Primario de Células , Uniones Estrechas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/farmacología , Regulación hacia Arriba
11.
Ann Neurol ; 70(5): 751-63, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22162058

RESUMEN

OBJECTIVE: Blood-derived myeloid antigen-presenting cells (APCs) account for a significant proportion of the leukocytes found within lesions of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). These APCs along with activated microglia are thought to be pivotal in the initiation of the central nervous system (CNS)-targeted immune response in MS and EAE. However, the exact molecules that direct the migration of myeloid cells from the periphery across the blood-brain barrier (BBB) remain largely unknown. METHODS: We identified Ninjurin-1 in a proteomic screen of human BBB endothelial cells (ECs). We assessed the expression of Ninjurin-1 by BBB-ECs and immune cells, and we determined the role of Ninjurin-1 in immune cell migration to the CNS in vivo in EAE mice. RESULTS: Ninjurin-1 was found to be weakly expressed in the healthy human and mouse CNS but upregulated on BBB-ECs and on infiltrating APCs during the course of EAE and in active MS lesions. In human peripheral blood, Ninjurin-1 was predominantly expressed by monocytes, whereas it was barely detectable on T and B lymphocytes. Moreover, Ninjurin-1 neutralization specifically abrogated the adhesion and migration of human monocytes across BBB-ECs, without affecting lymphocyte recruitment. Finally, Ninjurin-1 blockade reduced clinical disease activity and histopathological indices of EAE and decreased infiltration of macrophages, dendritic cells, and APCs into the CNS. INTERPRETATION: Our study uncovers an important cell-specific role for Ninjurin-1 in the transmigration of inflammatory APCs across the BBB and further emphasizes the importance of myeloid cell recruitment during the development of neuroinflammatory lesions.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular/fisiología , Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Linfocitos B/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Linfocitos T/metabolismo
12.
Brain ; 134(Pt 12): 3560-77, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22058139

RESUMEN

Clonally expanded CD8(+) T lymphocytes are present in multiple sclerosis lesions, as well as in the cerebrospinal fluid of patients with multiple sclerosis. In experimental autoimmune encephalomyelitis, CD8(+) T lymphocytes are found in spinal cord and brainstem lesions. However, the exact phenotype of central nervous system-infiltrating CD8(+) T lymphocytes and the mechanism by which these cells cross the blood-brain barrier remain largely unknown. Using cerebrospinal fluid from patients with multiple sclerosis, spinal cord from experimental autoimmune encephalomyelitis and coronavirus-induced encephalitis, we demonstrate that central nervous system-infiltrating CD8(+) T lymphocytes are mostly of the effector memory phenotype (CD62L(-) CCR7(-) granzymeB(hi)). We further show that purified human effector memory CD8(+) T lymphocytes transmigrate more readily across blood-brain barrier-endothelial cells than non-effector memory CD8(+) T lymphocytes, and that blood-brain barrier endothelium promotes the selective recruitment of effector memory CD8(+) T lymphocytes. Furthermore, we provide evidence for the recruitment of interferon-γ- and interleukin-17-secreting CD8(+) T lymphocytes by human and mouse blood-brain barrier endothelium. Finally, we show that in vitro migration of CD8(+) T lymphocytes across blood-brain barrier-endothelial cells is dependent on α4 integrin, but independent of intercellular adhesion molecule-1/leucocyte function-associated antigen-1, activated leucocyte cell adhesion molecule/CD6 and the chemokine monocyte chemotactic protein-1/CCL2. We also demonstrate that in vivo neutralization of very late antigen-4 restricts central nervous system infiltration of CD8(+) T lymphocytes in active immunization and adoptive transfer experimental autoimmune encephalomyelitis, and in coronavirus-induced encephalitis. Our study thus demonstrates an active role of the blood-brain barrier in the recruitment of effector memory CD8(+) T lymphocytes to the CNS compartment and defines α4 integrin as a major contributor of CD8(+) T lymphocyte entry into the brain.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Encefalitis Viral/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Integrina alfa4/metabolismo , Esclerosis Múltiple/inmunología , Adulto , Animales , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Linfocitos T CD8-positivos/metabolismo , Movimiento Celular/inmunología , Infecciones por Coronavirus/metabolismo , Encefalitis Viral/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Memoria Inmunológica , Ratones , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo
13.
Am J Pathol ; 175(2): 685-95, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19574432

RESUMEN

Murine neurocysticercosis is a parasitic infection transmitted through the direct ingestion of Taenia solium eggs, which differentially disrupts the barriers that protect the microenvironment of the central nervous system. Among the host factors that are involved in this response, matrix metalloproteinases (MMPs) have been recently described as important players. Doxycycline is a commonly prescribed antimicrobial drug that acts as an anti-inflammatory agent with broad inhibitory properties against MMPs. In this study, we examined the effects of doxycycline treatment in a murine model of neurocysticercosis. Animals treated with doxycycline exhibited reduced morbidity and mortality throughout the course of infection. Although similar levels of leukocyte infiltration were observed with both treatment regimens, doxycycline appeared to provide improved conditions for host survival, as reduced levels of apoptosis were detected among infiltrates as well as in neurons. As an established MMP blocker, doxycycline reduced the degradation of junctional complex proteins in parenchymal vessels. In addition, doxycycline treatment was associated with an overall reduction in the expression and activity of MMPs, particularly in areas of leukocyte infiltration. These results indicate that a broad-range inhibitor of MMPs promotes host survival and suggest the potential of doxycycline as a therapeutic agent for the control of inflammatory responses associated with neurocysticercosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Doxiciclina/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Inhibidores de la Metaloproteinasa de la Matriz , Neurocisticercosis/tratamiento farmacológico , Taenia solium/efectos de los fármacos , Animales , Encéfalo/patología , Femenino , Ratones , Ratones Endogámicos BALB C , Neurocisticercosis/enzimología , Neurocisticercosis/patología
14.
Parasitology ; 137(3): 359-72, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20109250

RESUMEN

Neurocysticercosis (NCC) is the most common parasitic disease of the central nervous system (CNS) caused by the larval form of the tapeworm Taenia solium. NCC has a long asymptomatic period with little or no inflammation, and the sequential progression to symptomatic NCC depends upon the intense inflammation associated with degeneration of larvae. The mechanisms involved in these progressive events are difficult to study in human patients. Thus it was necessary to develop an experimental model that replicated NCC. In this review, we describe studies of a murine model of NCC in terms of the release/secretion of parasite antigens, immune responses elicited within the CNS environment and subsequent pathogenesis. In particular, the kinetics of leukocyte subsets infiltrating into the brain are discussed in the context of disruption of the CNS barriers at distinct anatomical sites and the mechanisms contributing to these processes. In addition, production of various inflammatory mediators and the mechanisms involved in their induction by the Toll-like receptor signaling pathway are described. Overall, the knowledge gained from the mouse model of NCC has provided new insights for understanding the kinetics of events contributing to different stages of NCC and should aid in the formulation of more effective therapeutic approaches.


Asunto(s)
Mesocestoides/fisiología , Neurocisticercosis/parasitología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neurocisticercosis/inmunología , Taenia/fisiología
15.
Front Immunol ; 11: 576752, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193372

RESUMEN

Antigen (Ag)-specific tolerance induction by intravenous (i. v.) injection of high-dose auto-Ags has been explored for therapy of autoimmune diseases, including multiple sclerosis (MS). It is thought that the advantage of such Ag-specific therapy over non-specific immunomodulatory treatments would be selective suppression of a pathogenic immune response without impairing systemic immunity, thus avoiding adverse effects of immunosuppression. Auto-Ag i.v. tolerance induction has been extensively studied in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and limited clinical trials demonstrated that it is safe and beneficial to a subset of MS patients. Nonetheless, the mechanisms of i.v. tolerance induction are incompletely understood, hampering the development of better approaches and their clinical application. Here, we describe a pathway whereby auto-Ag i.v. injected into mice with ongoing clinical EAE induces interferon-gamma (IFN-γ) secretion by auto-Ag-specific CD4+ T cells, triggering interleukin (IL)-27 production by conventional dendritic cells type 1 (cDC1). IL-27 then, via signal transducer and activator of transcription 3 activation, induces programmed death ligand 1 (PD-L1) expression by monocyte-derived dendritic cells (moDCs) in the central nervous system of mice with EAE. PD-L1 interaction with programmed cell death protein 1 on pathogenic CD4+ T cells leads to their apoptosis/anergy, resulting in disease amelioration. These findings identify a key role of the IFN-γ/IL-27/PD-L1 axis, involving T cells/cDC1/moDCs in the induction of i.v. tolerance.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos/inmunología , Sistema Nervioso Central/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Monocitos/inmunología , Esclerosis Múltiple/inmunología , Animales , Autoinmunidad , Antígeno B7-H1/genética , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Tolerancia Inmunológica , Interferón gamma/metabolismo , Interleucina-27/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Sci Transl Med ; 11(518)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723036

RESUMEN

The presence of B lymphocyte-associated oligoclonal immunoglobulins in the cerebrospinal fluid is a classic hallmark of multiple sclerosis (MS). The clinical efficacy of anti-CD20 therapies supports a major role for B lymphocytes in MS development. Although activated oligoclonal populations of pathogenic B lymphocytes are able to traffic between the peripheral circulation and the central nervous system (CNS) in patients with MS, molecular players involved in this migration have not yet been elucidated. In this study, we demonstrated that activated leukocyte cell adhesion molecule (ALCAM/CD166) identifies subsets of proinflammatory B lymphocytes and drives their transmigration across different CNS barriers in mouse and human. We also showcased that blocking ALCAM alleviated disease severity in animals affected by a B cell-dependent form of experimental autoimmune encephalomyelitis. Last, we determined that the proportion of ALCAM+ B lymphocytes was increased in the peripheral blood and within brain lesions of patients with MS. Our findings indicate that restricting access to the CNS by targeting ALCAM on pathogenic B lymphocytes might represent a promising strategy for the development of next-generation B lymphocyte-targeting therapies for the treatment of MS.


Asunto(s)
Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Linfocitos B/citología , Movimiento Celular , Sistema Nervioso Central/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Endotelio/metabolismo , Humanos , Memoria Inmunológica , Ratones Noqueados , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito/inmunología , Proteínas Recombinantes/inmunología , Índice de Severidad de la Enfermedad
17.
Brain Res ; 1214: 145-58, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18466882

RESUMEN

During the course of murine neurocysticercosis (NCC), disruption of the unique protective barriers in the central nervous system (CNS) is evidenced by extravasation of leukocytes. This process varies according to the anatomical sites and diverse vascular beds analyzed. To examine mechanisms involved in the observed differences, the expression and activity of eight matrix metalloproteinases (MMPs) were analyzed in a murine model of NCC. The mRNA expression of the MMPs studied was upregulated as a result of infection, and active MMPs were mainly detected in leukocytes migrating into the brain. Polarized expression and gelatinolytic activity of several MMPs were identified in immune cells extravasating pial vessels as early as 1 day post infection. In contrast, leukocytes expressing active MMPs and extravasating parenchymal vessels were not observed until 5 weeks post infection. In ventricular areas, most of the MMP activity was detected in leukocytes traversing the ependyma from leptomeningeal infiltrates. In addition, immune cells continued to express active MMPs after exiting vessels suggesting that enzymatic activity of MMPs is not just required for diapedesis. These results correlate with our previous studies showing differential kinetics in the disruption of the CNS barriers upon infection and help document the important role of MMPs during leukocyte infiltration and inflammation.


Asunto(s)
Encéfalo/enzimología , Metaloproteinasas de la Matriz/metabolismo , Neurocisticercosis/enzimología , Neurocisticercosis/fisiopatología , Regulación hacia Arriba/fisiología , Animales , Encéfalo/citología , Antígeno CD11b/metabolismo , Modelos Animales de Enfermedad , Femenino , Indoles , Leucocitosis/enzimología , Leucocitosis/microbiología , Metaloproteinasas de la Matriz/clasificación , Metaloproteinasas de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , Neurocisticercosis/microbiología , Neurocisticercosis/patología , Parásitos/patogenicidad , ARN Mensajero/metabolismo , Factores de Tiempo
18.
J Clin Invest ; 128(5): 2000-2009, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29629902

RESUMEN

Rasmussen's encephalitis (RE) is a chronic inflammatory brain disorder that causes frequent seizures and unilateral hemispheric atrophy with progressive neurological deficits. Hemispherectomy remains the only treatment that leads to seizure freedom for this refractory epileptic syndrome. The absence of an animal model of disease has been a major obstacle hampering the development of effective therapies. Here, we describe an experimental mouse model that shares several clinical and pathological features with the human disease. Immunodeficient mice injected with peripheral blood mononuclear cells from RE patients and monitored by video electroencephalography developed severe seizures of cortical origin and showed intense astrogliosis and accumulation of human IFN-γ- and granzyme B-expressing T lymphocytes in the brain compared with mice injected with immune cells from control subjects. We also provide evidence for the efficacy of α4 integrin blockade, an approved therapy for the treatment of multiple sclerosis and Crohn's disease, in reducing inflammatory markers associated with RE in the CNS. This model holds promise as a valuable tool for understanding the pathology of RE and for developing patient-tailored experimental therapeutics.


Asunto(s)
Encéfalo/inmunología , Encefalitis/inmunología , Inflamación/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/trasplante , Convulsiones/inmunología , Adolescente , Adulto , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Niño , Modelos Animales de Enfermedad , Electroencefalografía , Encefalitis/diagnóstico por imagen , Encefalitis/fisiopatología , Femenino , Xenoinjertos , Humanos , Inflamación/diagnóstico por imagen , Inflamación/fisiopatología , Masculino , Ratones , Persona de Mediana Edad , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología
19.
J Neuroimmunol ; 187(1-2): 102-13, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17597230

RESUMEN

The blood brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB) limit the influx of immune mediators and bloodstream compounds into the central nervous system (CNS). Upon injury or infection, the integrity of these barriers is compromised and leukocyte infiltration occurs. The BCB is located in the choroid plexuses (CPs) found within ventricles of the brain, and it is considered one of the main routes of cellular infiltration into the CNS into healthy individuals. Our group recently showed that in a murine model of neurocysticercosis (NCC), there is a moderate increase in infiltration of leukocytes into ventricles, but the BCB is hardly compromised. To elucidate the role played by CPs and surrounding ependyma in leukocyte infiltration at ventricular sites, we analyzed changes in the expression of junctional complex proteins in animals intracranially infected with Mesocestoides corti. The results indicate that infection does not change the expression pattern of junctional complex proteins in CPs, but structural alterations and disappearance of these proteins were evident in ependyma adjacent to the internal leptomeninges. The kinetics and magnitude of these changes directly correlated with the extent of leukocyte infiltration through ependyma and with the expression and activity of MMPs. The results of this study indicate that the anatomical elements of the BCB are minimally disrupted during the course of murine NCC. Thus, most of the leukocytes infiltrating ventricles appear to extravasate through pial vessels located in the internal leptomeninges juxtaposed to the ependyma layer and then traverse the ependyma cells. In addition, MMP activity seems to be involved in this process. These results provide evidence for a previously undescribed entry route for leukocytes into the CNS.


Asunto(s)
Encefalopatías/patología , Epéndimo/fisiopatología , Regulación de la Expresión Génica/inmunología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurocisticercosis/patología , Animales , Encefalopatías/parasitología , Infecciones por Cestodos/complicaciones , Plexo Coroideo/parasitología , Plexo Coroideo/fisiopatología , Modelos Animales de Enfermedad , Epéndimo/parasitología , Femenino , Leucocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Neurocisticercosis/etiología , Neurocisticercosis/parasitología
20.
Brain Res ; 1169: 98-111, 2007 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-17686468

RESUMEN

The delicate balance required to maintain homeostasis of the central nervous system (CNS) is controlled by the blood-brain barrier (BBB). Upon injury, the BBB is disrupted compromising the CNS. BBB disruption has been represented as a uniform event. However, our group has shown in a murine model of neurocysticercosis (NCC) that BBB disruption varies depending upon the anatomical site/vascular bed analyzed. In this study further understanding of the mechanisms of BBB disruption was explored in blood vessels located in leptomeninges (pial vessels) and brain parenchyma (parenchymal vessels) by examining the expression of junctional complex proteins in murine brain infected with Mesocestoides corti. Both pial and parenchymal vessels from mock infected animals showed significant colocalization of junctional proteins and displayed an organized architecture. Upon infection, the patterned organization was disrupted and in some cases, particular tight junction and adherens junction proteins were undetectable or appeared to be undergoing proteolysis. The extent and timing of these changes differed between both types of vessels (pial vessel disruption within days versus weeks for parenchymal vessels). To approach potential mechanisms, the expression and activity of matrix metalloproteinase-9 (MMP-9) were evaluated by in situ zymography. The results indicated an increase in MMP-9 activity at sites of BBB disruption exhibiting leukocyte infiltration. Moreover, the timing of MMP activity in pial and parenchymal vessels correlated with the timing of permeability disruption. Thus, breakdown of the BBB is a mutable process despite the similar structure of the junctional complex between pial and parenchymal vessels and involvement of MMP activity.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Arterias Cerebrales/fisiopatología , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/metabolismo , Microcirculación/fisiopatología , Neurocisticercosis/fisiopatología , Uniones Adherentes/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/parasitología , Encéfalo/fisiopatología , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatología , Arterias Cerebrales/metabolismo , Quimiotaxis de Leucocito/genética , Modelos Animales de Enfermedad , Encefalitis/genética , Encefalitis/metabolismo , Encefalitis/fisiopatología , Activación Enzimática/fisiología , Matriz Extracelular/metabolismo , Femenino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Mesocestoides , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Microcirculación/metabolismo , Neurocisticercosis/metabolismo , Piamadre/irrigación sanguínea , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA