Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Esthet Restor Dent ; 36(2): 381-390, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37676053

RESUMEN

PURPOSE: To evaluate the reliability and failure modes of ultrathin (0.5 mm) lithium disilicate, translucent and ultra-translucent zirconia crowns for posterior teeth restorations. MATERIALS AND METHODS: Fifty-four mandibular first molar crowns of three ceramic materials: (1) Lithium disilicate (e.max CAD, Ivoclar Vivadent), (2) 3Y-TZP (Zirconn Translucent, Vipi), and (3) 5Y-PSZ (Cercon XT, Dentsply Sirona), with 0.5 mm of thickness were milled and cemented onto composite resin abutments. Eighteen samples of each group were tested under mouth-motion step-stress accelerated life testing in a humid environment using mild, moderate, and aggressive profiles. Data was subjected to Weibull statistics. Use level curves were plotted and reliability was calculated for a given mission of 100,000 cycles at 100, 200, and 300 N. Fractographic analyses of representative samples were performed in scanning electron microscope. RESULTS: Beta (ß) values suggest that failures were dictated by material's strength for lithium disilicate and by fatigue damage accumulation for both zirconias. No significant differences were detected in Weibull modulus and characteristic strength among groups. At a given mission of 100,000 cycles at 100 N, lithium disilicate presented higher reliability (98% CB: 95-99) regarding 3Y-TZP and 5Y-PSZ groups (84% CB: 65%-93% and 79% CB: 37&-94%, respectively). At 200 N, lithium disilicate reliability (82% CB: 66%-91%) was higher than 5Y-PSZ (20% CB: 4%-44%) and not significantly different from 3Y-TZP (54% CB: 32%-72%). Furthermore, at 300 N no significant differences in reliability were detected among groups, with a notable reduction in the reliability of all materials. Fractographic analyses showed that crack initiated at the interface between the composite core and the ceramic crowns due to tensile stress generated at the intaglio surface. CONCLUSIONS: Ultrathin lithium disilicate crowns demonstrated higher reliability relative to zirconia crowns at functional loads. Lithium disilicate and zirconia crown's reliability decreased significantly for missions at higher loads and similar failure modes were observed regardless of crown material. The indication of 0.5 mm thickness crowns in high-load bearing regions must be carefully evaluated. CLINICAL SIGNIFICANCE: Ultraconservative lithium disilicate and zirconia crowns of 0.5 mm thickness may be indicated in anterior restorations and pre-molars. Their clinical indication in high-load requirement regions must be carefully evaluated.


Asunto(s)
Coronas , Porcelana Dental , Reproducibilidad de los Resultados , Ensayo de Materiales , Cerámica , Circonio , Análisis del Estrés Dental , Fracaso de la Restauración Dental , Diseño Asistido por Computadora
2.
J Esthet Restor Dent ; 36(1): 47-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37772362

RESUMEN

OBJECTIVE: To evaluate the effect of different hydrofluoric acid concentrations and etching times on the surface, chemical composition and microstructure of lithium disilicate. MATERIAL AND METHODS: Ninety specimens of pressed lithium disilicate (LDS) were obtained (IPS e.max Press, Rosetta SP and LiSi Press). The specimens of each material were divided in two groups according to the hydrofluoric acid concentration: 5% and 10% (n = 15/group), and subdivided according to the etching time: 20, 40 and 60 s (n = 5/group). Crystalline evaluations and chemical composition were performed through x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), respectively. Microstructural analyses were performed by scanning electron microscope (SEM), surface roughness (Ra), and material thickness removal evaluation. Thickness removal and Ra data were analyzed by ANOVA and Tukey test (p < 0.05). RESULTS: XRD demonstrated characteristic peaks of lithium disilicate crystals, lithium phosphate and of a vitreous phase for all materials. EDS identified different compositions and SEM confirmed different surface responses to acid etching protocols. Material and etching time influenced Ra and material thickness removal (p < 0.05). CONCLUSION: Hydrofluoric acid concentration and etching time affect the surface characteristics of LDS differently. LiSi Press presented higher resistance to hydrofluoric acid etching compared to e.max Press and Rosetta SP. CLINICAL SIGNIFICANCE: Applying the appropriate etching protocol is pivotal to avoid excessive material removal and to prevent jeopardize the mechanical and optical properties of the material.


Asunto(s)
Recubrimiento Dental Adhesivo , Ácido Fluorhídrico , Ácido Fluorhídrico/química , Ensayo de Materiales , Porcelana Dental/química , Cerámica/química , Propiedades de Superficie , Recubrimiento Dental Adhesivo/métodos , Cementos de Resina/química
3.
J Prosthet Dent ; 130(5): 739.e1-739.e8, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37684141

RESUMEN

STATEMENT OF PROBLEM: The bonding of implant-supported prostheses is determined by abutment material, convergence angle, height, surface treatment, and luting agents. However, studies evaluating the bonding of luting agents to titanium base abutments with different heights under fatigue conditions are scarce. PURPOSE: The purpose of this in vitro study was to evaluate the retention of zirconia crowns bonded with different luting agents to titanium base abutments of different heights before and after fatigue testing. MATERIAL AND METHODS: Zirconia crowns were designed, milled, and distributed into 4 experimental groups according to the luting agents (G-Multi Primer/G-Cem LinkForce [MP/GC] and Scotchbond Universal/RelyX Ultimate [SU/RU]) and titanium base abutment heights (2.5 mm and 4 mm) (n=10). Pull-out testing was performed in a universal testing machine at a crosshead speed of 1 mm/min until crown displacement. Fatigue testing was performed by an electric precision fatigue simulator (1×106 cycles; 100 N; and 15 Hz), followed by pull-out testing of fatigued specimens. Collected data were statistically evaluated by using a linear mixed model after post hoc comparisons by the least significant difference test (α=.05). RESULTS: Luting agents, abutment heights, and fatigue influenced the bonding retention of zirconia crowns to titanium base abutments. SU/RU agents promoted higher pull-out compared with MP/GC for both abutment heights before and after fatigue. Higher abutment height increased pull-out regarding lower abutment height for SU/RU materials before and after fatigue testing. Although fatigue had no significant effect on the pull-out of MP/GC, lower bond retention was observed for SU/RU after fatigue, regardless of abutment height. CONCLUSIONS: Luting agent composition and the interaction with abutment height and fatigue influenced the retention of zirconia crowns to titanium base abutments.


Asunto(s)
Cementos Dentales , Implantes Dentales , Cementos Dentales/química , Titanio/química , Coronas , Circonio/química , Ensayo de Materiales , Pilares Dentales , Análisis del Estrés Dental
4.
Dent Mater ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38945742

RESUMEN

OBJECTIVES: To assess the effects of different aging protocols on chemical, physical, and mechanical properties of an experimental ATZ composite compared to a zirconia. METHODS: Disc-shaped specimens were obtained through uniaxial pressing of commercial powders (Tosoh), ATZ comprised of 80%ZrO2/20%Al2O3 (TZ-3YS20AB) and 3Y-TZP (3Y-SBE). The specimens of each material were divided into different groups according to the aging protocol: immediate, autoclave aging and hydrothermal reactor aging. The aging protocols were performed at 134 ºC for 20 h at 2.2 bar. Crystalline evaluations were performed using X-Ray Diffraction. The nanoindentation tests measured the elastic modulus (Em) and hardness (H). Biaxial flexural strength was performed, and Weibull statistics were used to determine the characteristic strength and Weibull modulus. The probability of survival was also determined. The Em and H data were analyzed by one-way ANOVA and Tukey test. RESULTS: Diffractograms revealed the presence of monoclinic phase in both materials after aging. The hydrothermal reactor decreased the Em for ATZ compared to its immediate condition; and the H for both ATZ and 3Y-TZP regarding their immediate and autoclave aging conditions, respectively. The aging protocols significantly increased the characteristic strength for ATZ, while decreased for 3Y-TZP. No difference regarding Weibull modulus was observed, except for 3Y-TZP aged in reactor. For missions of up to 500 MPa, both materials presented a high probability of survival (>99 %) irrespective of aging condition. SIGNIFICANCE: The synthesized ATZ composite exhibited greater physical and microstructural stability compared to 3Y-TZP, supporting potential application of the experimental material for long-span reconstructive applications.

5.
Materials (Basel) ; 16(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138684

RESUMEN

Dental zirconias have been broadly utilized in dentistry due to their high mechanical properties and biocompatibility. Although initially introduced in dentistry as an infrastructure material, the high rate of technical complications related to veneered porcelain has led to significant efforts to improve the optical properties of dental zirconias, allowing for its monolithic indication. Modifications in the composition, processing methods/parameters, and the increase in the yttrium content and cubic phase have been presented as viable options to improve zirconias' translucency. However, concerns regarding the hydrothermal stability of partially stabilized zirconia and the trade-off observed between optical and mechanical properties resulting from the increased cubic content remain issues of concern. While the significant developments in polycrystalline ceramics have led to a wide diversity of zirconia materials with different compositions, properties, and clinical indications, the implementation of strong, esthetic, and sufficiently stable materials for long-span fixed dental prostheses has not been completely achieved. Alternatives, including advanced polycrystalline composites, functionally graded structures, and nanosized zirconia, have been proposed as promising pathways to obtain high-strength, hydrothermally stable biomaterials. Considering the evolution of zirconia ceramics in dentistry, this manuscript aims to present a critical perspective as well as an update to previous classifications of dental restorative ceramics, focusing on polycrystalline ceramics, their properties, indications, and performance.

6.
Dent J (Basel) ; 11(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37754327

RESUMEN

To assess the reliability and failure modes of Ti-base abutments supported by narrow and wide-diameter implant systems. Narrow (Ø3.5 × 10 mm) and wide (Ø5 × 10 mm) implant systems of two different manufacturers with internal conical connections (16°) and their respective Ti-base abutments (3.5 and 4.5 mm) were evaluated. Ti-base abutments were torqued to the implants, standardized metallic maxillary incisor crowns were cemented, and step stress accelerated life testing of eighteen assemblies per group was performed in three loading profiles: mild, moderate, and aggressive until fracture or suspension. Reliability for missions of 100,000 cycles at 100 and 150 N was calculated, and fractographic analysis was performed. For missions at 100 N for 100,000 cycles, both narrow and wide implant systems exhibited a high probability of survival (≥99%, CI: 94-100%) without significant differences. At 150 N, wide-diameter implants presented higher reliability (≥99%, CI: 99-100%) compared to narrow implants (86%, CI: 61-95%), with no significant differences among manufacturers. Failure mode predominantly involved Ti-base abutment fractures at the abutment platform. Ti-base abutments supported by narrow and wide implant systems presented high reliability for physiologic masticatory forces, whereas for high load-bearing applications, wide-diameter implants presented increased reliability. Failures were confined to abutment fractures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA