Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 120(9): 2588-2600, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36919374

RESUMEN

The insect cell-baculovirus expression vector system (IC-BEVS) has shown to be a powerful platform to produce complex biopharmaceutical products, such as recombinant proteins and virus-like particles. More recently, IC-BEVS has also been used as an alternative to produce recombinant adeno-associated virus (rAAV). However, little is known about the variability of insect cell populations and the potential effect of heterogeneity (e.g., stochastic infection process and differences in infection kinetics) on product titer and/or quality. In this study, transcriptomics analysis of Sf9 insect cells during the production of rAAV of serotype 2 (rAAV2) using a low multiplicity of infection, dual-baculovirus system was performed via single-cell RNA-sequencing (scRNA-seq). Before infection, the principal source of variability in Sf9 insect cells was associated with the cell cycle. Over the course of infection, an increase in transcriptional heterogeneity was detected, which was linked to the expression of baculovirus genes as well as to differences in rAAV transgenes (rep, cap and gfp) expression. Noteworthy, at 24 h post-infection, only 29.4% of cells enclosed all three necessary rAAV transgenes to produce packed rAAV2 particles, indicating limitations of the dual-baculovirus system. In addition, the trajectory analysis herein performed highlighted that biological processes such as protein folding, metabolic processes, translation, and stress response have been significantly altered upon infection. Overall, this work reports the first application of scRNA-seq to the IC-BEVS and highlights significant variations in individual cells within the population, providing insight into the rational cell and process engineering toward improved rAAV2 production in IC-BEVS.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Transcriptoma/genética , Análisis de Expresión Génica de una Sola Célula , Células Sf9 , Baculoviridae/genética , Baculoviridae/metabolismo , Insectos
2.
Biotechnol Bioeng ; 120(9): 2578-2587, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37027346

RESUMEN

The majority of recombinant adeno-associated viruses (rAAV) approved for clinical use or in clinical trials areproduced by transient transfection using the HEK293 cell line. However, this platform has several manufacturing bottlenecks at commercial scales namely, low product quality (full to empty capsid ratio <20% in most rAAV serotypes), lower productivities obtained after scale-up and the high cost of raw materials, in particular of Good Manufacturing Practice grade plasmid DNA required for transfection. The HeLa-based stable cell line rAAV production system provides a robust and scalable alternative to transient transfection systems. Nevertheless, the time required to generate the producer cell lines combined with the complexity of rAAV production and purification processes still pose several barriers to the use of this platform as a suitable alternative to the HEK293 transient transfection. In this work we streamlined the cell line development and bioprocessing for the HeLaS3-based production of rAAV. By exploring this optimized approach, producer cell lines were generated in 3-4 months, and presented rAAV2 volumetric production (bulk) > 3 × 1011 vg/mL and full to empty capsids ratio (>70%) at 2 L bioreactor scale. Moreover, the established downstream process, based on ion exchange and affinity-based chromatography, efficiently eliminated process related impurities, including the Adenovirus 5 helper virus required for production with a log reduction value of 9. Overall, we developed a time-efficient and robust rAAV bioprocess using a stable producer cell line achieving purified rAAV2 yields > 1 × 1011 vg/mL. This optimized platform may address manufacturing challenges for rAAV based medicines.


Asunto(s)
Dependovirus , Vectores Genéticos , Humanos , Dependovirus/genética , Células HEK293 , Células HeLa , Transfección
3.
BMC Infect Dis ; 23(1): 846, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041026

RESUMEN

BACKGROUND: Protection against SARS-CoV-2 is mediated by humoral and T cell responses. Pakistan faced relatively low morbidity and mortality from COVID-19 through the pandemic. To examine the role of prior immunity in the population, we studied IgG antibody response levels, virus neutralizing activity and T cell reactivity to Spike protein in a healthy control group (HG) as compared with COVID-19 cases and individuals from the pre-pandemic period (PP). METHODS: HG and COVID-19 participants were recruited between October 2020 and May 2021. Pre-pandemic sera was collected before 2018. IgG antibodies against Spike and its Receptor Binding Domain (RBD) were determined by ELISA. Virus neutralization activity was determined using a PCR-based micro-neutralization assay. T cell - IFN-γ activation was assessed by ELISpot. RESULTS: Overall, the magnitude of anti-Spike IgG antibody levels as well as seropositivity was greatest in COVID-19 cases (90%) as compared with HG (39.8%) and PP (12.2%). During the study period, Pakistan experienced three COVID-19 waves. We observed that IgG seropositivity to Spike in HG increased from 10.3 to 83.5% during the study, whilst seropositivity to RBD increased from 7.5 to 33.3%. IgG antibodies to Spike and RBD were correlated positively in all three study groups. Virus neutralizing activity was identified in sera of COVID-19, HG and PP. Spike reactive T cells were present in COVID-19, HG and PP groups. Individuals with reactive T cells included those with and without IgG antibodies to Spike. CONCLUSIONS: Antibody and T cell responses to Spike protein in individuals from the pre-pandemic period suggest prior immunity against SARS-CoV-2, most likely from cross-reactive responses. The rising seroprevalence observed in healthy individuals through the pandemic without known COVID-19 may be due to the activation of adaptive immunity from cross-reactive memory B and T cells. This may explain the more favourable COVID-19 outcomes observed in this population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Pakistán/epidemiología , Pandemias , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Inmunoglobulina G , Ensayo de Immunospot Ligado a Enzimas , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunidad Humoral
4.
J Hepatol ; 76(3): 694-725, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34715263

RESUMEN

As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Pruebas de Función Hepática/estadística & datos numéricos , Hígado/crecimiento & desarrollo , Homeostasis/inmunología , Homeostasis/fisiología , Humanos , Hígado/fisiología , Pruebas de Función Hepática/métodos
5.
Malar J ; 21(1): 151, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35570264

RESUMEN

BACKGROUND: Targeting the asymptomatic liver stage of Plasmodium infection through chemoprevention could become a key intervention to reduce malaria-associated incidence and mortality. METHODS: M5717, a Plasmodium elongation factor 2 inhibitor, was assessed in vitro and in vivo with readily accessible Plasmodium berghei parasites. In an animal refinement, reduction, replacement approach, the in vitro IC99 value was used to feed a Population Pharmacokinetics modelling and simulation approach to determine meaningful effective doses for a subsequent Plasmodium sporozoite-induced volunteer infection study. RESULTS: Doses of 100 and 200 mg would provide exposures exceeding IC99 in 96 and 100% of the simulated population, respectively. CONCLUSIONS: This approach has the potential to accelerate the search for new anti-malarials, to reduce the number of healthy volunteers needed in a clinical study and decrease and refine the animal use in the preclinical phase.


Asunto(s)
Antimaláricos , Malaria , Animales , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Humanos , Hígado/parasitología , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria/prevención & control , Factor 2 de Elongación Peptídica , Plasmodium berghei
6.
Biotechnol Bioeng ; 118(7): 2536-2547, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764532

RESUMEN

Stable insect cell lines are emerging as an alternative to the insect cell-baculovirus expression vector system (IC-BEVS) for protein expression, benefiting from being a virus-free, nonlytic system. Still, the titers achieved are considerably lower. In this study, stable insect (Sf-9 and High Five) cells producing Gag virus-like particles (VLPs) were first adapted to grow under hypothermic culture conditions (22°C instead of standard 27°C), and then pseudotyped with a model membrane protein (influenza hemagglutinin [HA]) for expression of Gag-HA VLPs. Adaptation to lower temperature led to an increase in protein titers of up to 12-fold for p24 (as proxy for Gag-VLP) and sixfold for HA, with adapted Sf-9 cells outperforming High Five cells. Resulting Gag-HA VLPs producer Sf-9 cells were cultured to high cell densities, that is, 100 × 106 cell/ml, using perfusion (ATF® 2) in 1 L stirred-tank bioreactors. Specific p24 and HA production rates were similar to those of batch culture, enabling to increase volumetric titers by 7-8-fold without compromising the assembly of Gag-HA VLPs. Importantly, the antigen (HA) quantity in VLPs generated using stable adapted cells in perfusion was ≈5-fold higher than that from IC-BEVS, with the added benefit of being a baculovirus-free system. This study demonstrates the potential of combining stable expression in insect cells adapted to hypothermic culture conditions with perfusion for improving Gag-HA VLPs production.


Asunto(s)
Técnicas de Cultivo de Célula , Proteína p24 del Núcleo del VIH/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Animales , Proteína p24 del Núcleo del VIH/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Proteínas Recombinantes de Fusión/genética , Células Sf9 , Spodoptera
7.
Biotechnol Bioeng ; 118(9): 3522-3532, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33818758

RESUMEN

Virus-based biologicals are one of the most promising biopharmaceuticals of the 21st century medicine and play a significant role in the development of innovative therapeutic, prophylactic, and clinical applications. Oncolytic virus manufacturing scale can range from 5 L in research and development up to 50 L for clinical studies and reach hundreds of liters for commercial scale. The inherent productivity and high integration potential of periodic counter-current chromatography (PCC) offer a transversal solution to decrease equipment footprint and the reduction of several non-value-added unit operations. We report on the design of an efficient PCC process applied to the intermediate purification of oncolytic adenovirus. The developed ion-exchange chromatographic purification method was carried out using a four-column setup for three different scenarios: (i) variation in the feedstock, (ii) potential use of a post-load washing step to improve virus recovery, and (iii) stability during extended operation. Obtained virus recoveries (57%-86%) and impurity reductions (>80% DNA, and >70% total protein) match or overcome batch purification. Regarding process stability and automation, our results show that not only the dynamic control strategy used is able to suppress perturbations in the sample inlet but also allows for unattended operation in the case of ion exchange capture.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Virus Oncolíticos/aislamiento & purificación , Células A549 , Distribución en Contracorriente , Humanos
8.
Biotechnol Bioeng ; 118(9): 3610-3617, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33713416

RESUMEN

Hepatocyte-like cells derived from human-induced pluripotent stem cells (hiPSC-HLC) are expected to have important applications in drug screening and regenerative medicine. However, hiPSC-HLC are difficult to produce on a large-scale to obtain relevant numbers for such applications. The aim of this study was to implement a novel integrated strategy for scalable production of hiPSC-HLC and demonstrate the applicability of dielectric spectroscopy to monitor hiPSC expansion/differentiation processes. We cultured hiPSC as three-dimensional (3D) aggregates in stirred-tank bioreactors (STB) operated in perfusion with an in situ capacitance probe. Dissolved oxygen concentration and dilution rate were controlled along the process and after 5 days of cell expansion, the hepatic differentiation was integrated in sequential steps for 28 days. The hiPSC were able to grow as 3D aggregates and the expression of hepatic markers and albumin production after differentiation confirmed that hepatocyte differentiation improved when compared to 2D culture. These hiPSC-HLC exhibited functional characteristics of hepatocytes including glycogen storage and drug metabolization capacity. Our results also show a good correlation between the cell permittivity measured online and the aggregate biovolume measured by standard offline methods, demonstrating for the first time the potential of dielectric spectroscopy to monitor hiPSC expansion and differentiation in STB.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Espectroscopía Dieléctrica , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hepatocitos/citología , Humanos , Células Madre Pluripotentes Inducidas/citología
9.
Biotechnol Bioeng ; 118(6): 2202-2219, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33624859

RESUMEN

Serological assays are valuable tools to study SARS-CoV-2 spread and, importantly, to identify individuals that were already infected and would be potentially immune to a virus reinfection. SARS-CoV-2 Spike protein and its receptor binding domain (RBD) are the antigens with higher potential to develop SARS-CoV-2 serological assays. Moreover, structural studies of these antigens are key to understand the molecular basis for Spike interaction with angiotensin converting enzyme 2 receptor, hopefully enabling the development of COVID-19 therapeutics. Thus, it is urgent that significant amounts of this protein became available at the highest quality. In this study, we produced Spike and RBD in two human derived cell hosts: HEK293-E6 and Expi293F™. We evaluated the impact of different and scalable bioprocessing approaches on Spike and RBD production yields and, more importantly, on these antigens' quality attributes. Using negative and positive sera collected from human donors, we show an excellent performance of the produced antigens, assessed in serologic enzyme-linked immunosorbent assay (ELISA) tests, as denoted by the high specificity and sensitivity of the test. We show robust Spike productions with final yields of approx. 2 mg/L of culture that were maintained independently of the production scale or cell culture strategy. To the best of our knowledge, the final yield of 90 mg/L of culture obtained for RBD production, was the highest reported to date. An in-depth characterization of SARS-CoV-2 Spike and RBD proteins was performed, namely the antigen's oligomeric state, glycosylation profiles, and thermal stability during storage. The correlation of these quality attributes with ELISA performance show equivalent reactivity to SARS-CoV-2 positive serum, for all Spike and RBD produced, and for all storage conditions tested. Overall, we provide straightforward protocols to produce high-quality SARS-CoV-2 Spike and RBD antigens, that can be easily adapted to both academic and industrial settings; and integrate, for the first time, studies on the impact of bioprocess with an in-depth characterization of these proteins, correlating antigen's glycosylation and biophysical attributes to performance of COVID-19 serologic tests.


Asunto(s)
Antígenos Virales/biosíntesis , Glicosilación , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Frío , Ensayo de Inmunoadsorción Enzimática/normas , Congelación , Células HEK293 , Humanos , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/normas , SARS-CoV-2 , Pruebas Serológicas/normas , Glicoproteína de la Espiga del Coronavirus/normas
10.
PLoS Comput Biol ; 16(4): e1007780, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32298259

RESUMEN

Metabolism plays an essential role in cell fate decisions. However, the methods used for metabolic characterization and for finding potential metabolic regulators are still based on characterizing cellular metabolic steady-state which is dependent on the extracellular environment. In this work, we hypothesized that the response dynamics of intracellular metabolic pools to extracellular stimuli is controlled in a cell type-specific manner. We applied principles of process dynamics and control to human induced pluripotent stem cells (hiPSC) and human neural stem cells (hNSC) subjected to a sudden extracellular glutamine step. The fold-changes of steady-states and the transient profiles of metabolic pools revealed that dynamic responses were reproducible and cell type-specific. Importantly, many amino acids had conserved dynamics and readjusted their steady state concentration in response to the increased glutamine influx. Overall, we propose a novel methodology for systematic metabolic characterization and identification of potential metabolic regulators.


Asunto(s)
Células Madre Pluripotentes Inducidas , Redes y Vías Metabólicas/fisiología , Células-Madre Neurales , Reactores Biológicos , Células Cultivadas , Biología Computacional , Espacio Extracelular/química , Espacio Extracelular/metabolismo , Glutamina/metabolismo , Glutamina/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo
11.
Circ Res ; 123(9): 1066-1079, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30355156

RESUMEN

RATIONALE: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a readily available, robustly reproducible, and physiologically appropriate human cell source for cardiac disease modeling, drug discovery, and toxicity screenings in vitro. However, unlike adult myocardial cells in vivo, hPSC-CMs cultured in vitro maintain an immature metabolic phenotype, where majority of ATP is produced through aerobic glycolysis instead of oxidative phosphorylation in the mitochondria. Little is known about the underlying signaling pathways controlling hPSC-CMs' metabolic and functional maturation. OBJECTIVE: To define the molecular pathways controlling cardiomyocytes' metabolic pathway selections and improve cardiomyocyte metabolic and functional maturation. METHODS AND RESULTS: We cultured hPSC-CMs in different media compositions including glucose-containing media, glucose-containing media supplemented with fatty acids, and glucose-free media with fatty acids as the primary carbon source. We found that cardiomyocytes cultured in the presence of glucose used primarily aerobic glycolysis and aberrantly upregulated HIF1α (hypoxia-inducible factor 1α) and its downstream target lactate dehydrogenase A. Conversely, glucose deprivation promoted oxidative phosphorylation and repressed HIF1α. Small molecule inhibition of HIF1α or lactate dehydrogenase A resulted in a switch from aerobic glycolysis to oxidative phosphorylation. Likewise, siRNA inhibition of HIF1α stimulated oxidative phosphorylation while inhibiting aerobic glycolysis. This metabolic shift was accompanied by an increase in mitochondrial content and cellular ATP levels. Furthermore, functional gene expressions, sarcomere length, and contractility were improved by HIF1α/lactate dehydrogenase A inhibition. CONCLUSIONS: We show that under standard culture conditions, the HIF1α-lactate dehydrogenase A axis is aberrantly upregulated in hPSC-CMs, preventing their metabolic maturation. Chemical or siRNA inhibition of this pathway results in an appropriate metabolic shift from aerobic glycolysis to oxidative phosphorylation. This in turn improves metabolic and functional maturation of hPSC-CMs. These findings provide key insight into molecular control of hPSC-CMs' metabolism and may be used to generate more physiologically mature cardiomyocytes for drug screening, disease modeling, and therapeutic purposes.


Asunto(s)
Aminoquinolinas/farmacología , Diferenciación Celular/efectos de los fármacos , Disulfuros/farmacología , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Alcaloides Indólicos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sulfonamidas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Glucólisis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/enzimología , Fosforilación Oxidativa/efectos de los fármacos , Fenotipo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Biotechnol Bioeng ; 116(11): 2803-2814, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317525

RESUMEN

The process analytical technology (PAT) initiative shifted the bioprocess development mindset towards real-time monitoring and control tools to measure relevant process variables online, and acting accordingly when undesirable deviations occur. Online monitoring is especially important in lytic production systems in which released proteases and changes in cell physiology are likely to affect product quality attributes, as is the case of the insect cell-baculovirus expression vector system (IC-BEVS), a well-established system for production of viral vectors and vaccines. Here, we applied fluorescence spectroscopy as a real-time monitoring tool for recombinant adeno-associated virus (rAAV) production in the IC-BEVS. Fluorescence spectroscopy is simple, yet sensitive and informative. To overcome the strong fluorescence background of the culture medium and improve predictive ability, we combined artificial neural network models with a genetic algorithm-based approach to optimize spectra preprocessing. We obtained predictive models for rAAV titer, cell viability and cell concentration with normalized root mean squared errors of 7%, 4%, and 7%, respectively, for leave-one-batch-out cross-validation. Our approach shows fluorescence spectroscopy allows real-time determination of the best time of harvest to maintain rAAV infectivity, an important quality attribute, and detection of deviations from the golden batch profile. This methodology can be applied to other biopharmaceuticals produced in the IC-BEVS, supporting the use of fluorescence spectroscopy as a versatile PAT tool.


Asunto(s)
Reactores Biológicos , Dependovirus/crecimiento & desarrollo , Modelos Biológicos , Animales , Dependovirus/genética , Células Sf9 , Espectrometría de Fluorescencia , Spodoptera
13.
Biotechnol Bioeng ; 116(5): 1245-1252, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659585

RESUMEN

In vitro cell-based models that better mimic the human heart tissue are of utmost importance for drug development and cardiotoxicity testing but also as tools to understand mechanisms related with heart disease at cellular and molecular level. Besides, the implementation of analytical tools that allow the depiction and comprehensive understanding of the molecular mechanisms of the crosstalk between the different cell types is also relevant. In this work, we implemented a human cardiac tissue-like in vitro model, derived from human-induced pluripotent stem cell (hiPSC), and evaluated the relevance of the cell-cell communication between the two of the most representative cell populations of the human heart: cardiomyocytes (hiPSC-CM) and endothelial cells (hiPSC-EC). We observed that heterotypic cell communication promotes: (a) structural maturation of hiPSC-CM and (b) deposition of several extracellular matrix components (such as collagens and fibronectin). Overall, the toolbox of analytical techniques used in our study not only enabled us to validate previous reports from the literature on the importance of the presence of hiPSC-EC on hiPSC-CM maturation, but also bring new insights on the molecular mechanisms involved in the communication between these two cell types when cocultured in vitro.


Asunto(s)
Comunicación Celular , Diferenciación Celular , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Línea Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología
14.
J Cell Sci ; 129(16): 3178-88, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27383770

RESUMEN

The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling.


Asunto(s)
Astrocitos/metabolismo , Monóxido de Carbono/farmacología , Neuroprotección/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Receptores Purinérgicos/metabolismo , Transducción de Señal/efectos de los fármacos , Adenosina/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Técnicas de Cocultivo , Cisteína/metabolismo , Espacio Extracelular/metabolismo , Silenciador del Gen/efectos de los fármacos , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacología , Ratones Endogámicos C57BL , Modelos Biológicos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pirimidinas/farmacología , Receptor trkB/metabolismo , Receptores de Adenosina A2/metabolismo , Serina/metabolismo , Suramina/farmacología , Tioinosina/análogos & derivados , Tioinosina/farmacología , Triazoles/farmacología , Xantinas/farmacología
16.
Biotechnol Bioeng ; 115(3): 630-644, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178315

RESUMEN

Three-dimensional (3D) cultures of human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) hold great promise for drug discovery, providing a better approximation to the in vivo physiology over standard two-dimensional (2D) monolayer cultures. However, the transition of CM differentiation protocols from 2D to 3D cultures is not straightforward. In this work, we relied on the aggregation of hPSC-derived cardiac progenitors and their culture under agitated conditions to generate highly pure cardiomyocyte aggregates. Whole-transcriptome analysis and 13 C-metabolic flux analysis allowed to demonstrate at both molecular and fluxome levels that such 3D culture environment enhances metabolic maturation of hiPSC-CMs. When compared to 2D, 3D cultures of hiPSC-CMs displayed down-regulation of genes involved in glycolysis and lipid biosynthesis and increased expression of genes involved in OXPHOS. Accordingly, 3D cultures of hiPSC-CMs had lower fluxes through glycolysis and fatty acid synthesis and increased TCA-cycle activity. Importantly, we demonstrated that the 3D culture environment reproducibly improved both CM purity and metabolic maturation across different hPSC lines, thereby providing a robust strategy to derive enriched hPSC-CMs with metabolic features closer to that of adult CMs.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Glucólisis , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa , Línea Celular , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología
17.
Nutr Cancer ; 70(2): 257-266, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29313727

RESUMEN

Polymethoxylated flavones (PMFs) have been recognized to inhibit colorectal cancer proliferation through various mechanisms, however most of these studies have been performed on cells grown as monolayers that present limitations in mimicking the 3D tumor architecture and microenvironment. The main aim of this study was to investigate the anticancer potential of an orange peel extract (OPE) enriched in PMFs in a 3D cell model of colorectal cancer. The OPE was developed by supercritical fluid extraction and the anticancer effect was evaluated in HT29 spheroids cultures in a stirred-tank based system. Results showed that OPE inhibited cell proliferation, induced cell cycle arrest (G2/M phase), promoted apoptosis, and reduced ALDH+ population on HT29 spheroids. The antiproliferative activity was significantly lower than that obtained for 2D model (EC50 value of 0.43 ± 0.02 mg/mL) and this effect was dependent on diameter and cell composition/phenotype of spheroids derived from different culture days (day 3 - 0.53 ± 0.05 mg/mL; day 5 - 0.55 ± 0.03 mg/mL; day 7 - 1.24 ± 0.15 mg/mL). HT29 spheroids collected at day 7 presented typical characteristics of in vivo solid tumors including a necrotic/apoptotic core, hypoxia regions, presence of cancer stem cells, and a less differentiated invasive front. Nobiletin, sinesentin, and tangeretin were identified as the main compounds responsible for the anticancer activity.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Citrus sinensis/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Flavonas/farmacología , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Flavonas/análisis , Flavonas/química , Células HT29 , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología
18.
Appl Microbiol Biotechnol ; 102(2): 655-666, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143881

RESUMEN

Conformationally complex membrane proteins (MPs) are therapeutic targets in many diseases, but drug discovery has been slowed down by the lack of efficient production tools. Co-expression of MPs with matrix proteins from enveloped viruses is a promising approach to obtain correctly folded proteins at the surface of virus-like particles (VLPs), preserving their native lipidic environment. Here, we implemented a site-specific recombinase-mediated cassette exchange (RMCE) strategy to establish a reusable HIV-1 Gag-expressing insect cell line for fast production of target MPs on the surface of Gag-VLPs. The Sf9 cell line was initially tagged with a Gag-GFP-expressing cassette incorporating two flipase recognition target sites (FRTs), one within the fusion linker of Gag-GFP. The GFP cassette was afterwards replaced by a Cherry cassette via flipase (Flp) recombination. The fusion of Gag to fluorescent proteins enabled high-throughput screening of cells with higher Gag expression and Flp-mediated cassette exchange ability, while keeping the functionality of the VLP scaffold unaltered. The best cell clone was then Flp-recombinated to produce Gag-VLPs decorated with a human ß2-adrenergic receptor (ß2AR). Release of a fluorescently labeled ß2AR into the culture supernatant was confirmed by immunoblotting, and its co-localization with Gag-VLPs was visualized by confocal microscopy. Furthermore, the differential avidity of ß2AR-dsplaying Gag-VLPs versus "naked" Gag-VLPs to an anti-ß2AR antibody measured by ELISA corroborated the presence of ß2AR at the surface of the Gag-VLPs. In conclusion, this novel insect cell line represents a valuable platform for fast production of MPs in their native conformation, which can accelerate small-molecule and antibody drug discovery programs.


Asunto(s)
Marcación de Gen/métodos , VIH-1/genética , Proteínas de la Membrana/biosíntesis , Recombinasas/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Animales , Medios de Cultivo/química , Ensayo de Inmunoadsorción Enzimática , Proteínas Fluorescentes Verdes/genética , VIH-1/química , Humanos , Microscopía Confocal , Receptores Adrenérgicos beta 2/genética , Recombinasas/genética , Células Sf9 , Transfección , Virión/genética
19.
Biotechnol Lett ; 40(4): 633-639, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29353442

RESUMEN

OBJECTIVE: Develop an engineered cell line containing two flexible gene expression systems enabling the continuous production of tailor-made recombinant gammaretrovirus with predictable productivities through targeted integration. RESULTS: Dual-FLEX cells (dFLEX) contain two independent recombinase-mediated cassette exchange (RMCE) systems which confer flexibility to the expression of different transgene and envelope combinations. The flexible envelope expression in dFLEX cells was validated by pseudotyping retrovirus particles with three different viral envelope proteins-GaLV, 4070A and VSV-G. Our results show that dFLEX cells are able to provide high titers of infectious retroviral particles with a single-copy integration of the envelope constructs after RMCE. The integrated CRE/Lox tagging cassette was amenable to express envelope proteins both using constitutive (i.e. CMV) and inducible (i.e. Tet-on) promoters. CONCLUSIONS: dFLEX cell line provides predictable productivities of recombinant retrovirus pseudotyped with different envelope proteins broadening the tropism of particles that can be generated and thus accelerating the research and development of retrovirus-based products.


Asunto(s)
Mutagénesis Insercional/métodos , Recombinasas/genética , Retroviridae/genética , Proteínas del Envoltorio Viral/genética , Ingeniería Celular , Línea Celular , Regulación Viral de la Expresión Génica/genética , Vectores Genéticos , Humanos , Regiones Promotoras Genéticas , Transgenes/genética
20.
J Biol Chem ; 291(9): 4711-22, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26694613

RESUMEN

Herpesviruses are a large order of animal enveloped viruses displaying a virion fusion mechanism of unusual complexity. Their multipartite machinery has a conserved core made of the gH/gL ancillary complexes and the homo-trimeric fusion protein glycoprotein B (gB). Despite its essential role in starting the viral infection, gB interaction with membrane lipids is still poorly understood. Here, evidence is provided demonstrating that human cytomegalovirus (HCMV) gB depends on the S-palmitoylation of its endodomain for an efficient interaction with cholesterol-rich membrane patches. We found that, unique among herpesviral gB proteins, the HCMV fusion factor has a Cys residue in the C-terminal region that is palmitoylated and mediates methyl-ß-cyclodextrin-sensitive self-association of purified gB. A cholesterol-dependent virus-like particle trap assay, based on co-expression of the HIV Gag protein, confirmed that this post-translational modification is functional in the context of cellular membranes. Mutation of the palmitoylated Cys residue to Ala or inhibition of protein palmitoylation decreased HCMV gB export via Gag particles. Moreover, purified gBC777A showed an increased kinetic sensitivity in a cholesterol depletion test, demonstrating that palmitoyl-gB limits outward cholesterol diffusion. Finally, gB palmitoylation was required for full fusogenic activity in human epithelial cells. Altogether, these results uncover the palmitoylation of HCMV gB and its role in gB multimerization and activity.


Asunto(s)
Colesterol/metabolismo , Citomegalovirus/fisiología , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Sustitución de Aminoácidos , Animales , Línea Celular , Cisteína/metabolismo , Humanos , Lepidópteros , Membrana Dobles de Lípidos/metabolismo , Lipoilación , Fusión de Membrana , Microdominios de Membrana , Mutación , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA