Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119759, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091729

RESUMEN

While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.


Asunto(s)
Capsicum , Sulfuro de Hidrógeno , Sulfuros , Sulfuro de Hidrógeno/farmacología , Peróxido de Hidrógeno , Antioxidantes , Clorofila , Suplementos Dietéticos , Fosfatos , Plantones
2.
Curr Issues Mol Biol ; 45(2): 1349-1372, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36826033

RESUMEN

Bottle gourd, a common vegetable in the human diet, has been valued for its medicinal and energetic properties. In this experiment, the time-resolved analysis of the changes in the proteins' electrophoretic patterning of the seed development at different crossing periods was studied in bottle gourd using label-free quantitative proteomics. Hybrid HBGH-35 had the highest observed protein levels at the 4th week of the crossing period (F4) compared to the parental lines, viz. G-2 (M) and Pusa Naveen (F). The crossing period is significantly correlated with grain filling and reserve accumulation. The observed protein expression profile after storage was related to seed maturation and grain filling in bottle gourds. A total of 2517 proteins were identified in differentially treated bottle gourd fruits, and 372 proteins were differentially expressed between different crossing periods. Proteins related to carbohydrate and energy metabolism, anthocyanin biosynthesis, cell stress response, and fruit firmness were characterized and quantified. Some proteins were involved in the development, while others were engaged in desiccation and the early grain-filling stage. F4 was distinguished by an increase in the accumulation of low molecular weight proteins and enzymes such as amylase, a serine protease, and trypsin inhibitors. The seed vigor also followed similar patterns of differential expression of seed storage proteins. Our findings defined a new window during seed production, which showed that at F4, maximum photosynthetic assimilates accumulated, resulting in an enhanced source-sink relationship and improved seed production. Our study attempts to observe the protein expression profiling pattern under different crossing periods using label-free quantitative proteomics in bottle gourd. It will facilitate future detailed investigation of the protein associated with quality traits and the agronomic importance of bottle gourd through selective breeding programs.

3.
Plant Cell Rep ; 41(3): 549-569, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33410927

RESUMEN

KEY MESSAGE: A detailed study of the response of wheat plants, inoculated with drought-tolerant PGPR is studied which would be beneficial to achieve genetic improvement of wheat for drought tolerance. Drought stress, a major challenge under current climatic conditions, adversely affects wheat productivity. In the current study, we observed the response of wheat plants, inoculated with drought-tolerant plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium (MU2) and Bacillus licheniformis (MU8) under induced drought stress. In vitro study of 90 rhizobacteria exhibited 38 isolates showed one or more plant growth-promoting properties, such as solubilization of phosphorus, potassium, and exopolysaccharide production. Four strains revealing the best activities were tested for their drought-tolerance ability by growing them on varying water potentials (- 0.05 to - 0.73 MPa). Among them, two bacterial strains Bacillus megaterium and Bacillus licheniformis showed the best drought-tolerance potential, ACC deaminase activities, IAA production, and antagonistic activities against plant pathogens. Additionally, these strains when exposed to drought stress (- 0.73 MPa) revealed the induction of three new polypeptides (18 kDa, 35 kDa, 30 kDa) in Bacillus megaterium. We determined that 106 cells/mL of Bacillus megaterium and Bacillus licheniformis were enough to induce drought tolerance in wheat under drought stress. These drought-tolerant strains increased the germination index (11-46%), promptness index (16-50%), seedling vigor index (11-151%), fresh weight (35-192%), and dry weight (58-226%) of wheat under irrigated and drought stress. Moreover, these strains efficiently colonized the wheat roots and increased plant biomass, relative water content, photosynthetic pigments, and osmolytes. Upon exposure to drought stress, Bacillus megaterium inoculated wheat plants exhibited improved tolerance by enhancing 59% relative water content, 260, 174 and 70% chlorophyll a, b and carotenoid, 136% protein content, 117% proline content and 57% decline in MDA content. Further, activities of defense-related antioxidant enzymes were also upregulated. Our results revealed that drought tolerance was more evident in Bacillus megaterium as compared to Bacillus licheniformis. These strains could be effective bioenhancer and biofertilizer for wheat cultivation in arid and semi-arid regions. However, a detailed study at the molecular level to deduce the mechanism by which these strains alleviate drought stress in wheat plants needs to be explored.


Asunto(s)
Bacillus megaterium , Sequías , Clorofila A/metabolismo , Raíces de Plantas/metabolismo , Triticum/metabolismo , Agua/metabolismo
4.
Physiol Plant ; 172(2): 1399-1411, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32949410

RESUMEN

Thiamin, an important member of the vitamin B family, is believed to play a significant role in mitigating environmental stresses including drought stress. In turnip, drought stress causes a reduced growth, biomass yield, pigment content, total phenolics and ascorbic acid (AsA), particularly at 50% field capacity (F.C.) in the two cultivars (cv) studied. However, a significant enhancement was observed in the contents of leaf proline, glycinebetaine (GB), malondialdehyde (MDA), hydrogen peroxide (H2 O2 ) and the activities of catalase (CAT) and superoxide dismutase (SOD) as well as root proline, GB, total phenolics, AsA, H2 O2 , MDA and the activities of peroxidase (POD) and SOD. However, foliar-applied thiamin significantly improved (particularly 100 mM) all the growth attributes, photosynthetic pigments, leaf and root osmoprotectants (GB and proline), AsA, total phenolics and the activities of enzymatic antioxidants such as SOD and POD as well as root CAT in both turnip cultivars under drought stress conditions. Foliar application of thiamin was effective in decreasing the leaf and root H2 O2 and MDA content in both cultivars particularly at 50% F.C. Thiamin-induced growth of both turnip cultivars, particularly of cv. Purple Top, was found to be associated with increased photosynthetic pigments, proline and GB contents and antioxidant capacity, but reduced levels of reactive oxygen species (ROS) under water deficit conditions. So, it is suggested that exogenous application of thiamin can be effective in improving drought tolerance of plants.


Asunto(s)
Brassica napus , Brassica rapa , Antioxidantes , Sequías , Hojas de la Planta , Tiamina
5.
Physiol Plant ; 173(1): 191-200, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33502791

RESUMEN

The contamination of agricultural soils with cadmium (Cd) is one of the serious worldwide concerns for food security. Biochar and organic manures have been known for enhancing plant growth and minimizing toxic trace element stress in plants. However, less is known about the effect of different organic amendments on Cd and uptake of essential nutrients by wheat. Thus, the effects of rice straw biochar (RSB), maize stalk biochar (MSB), farmyard manure (FYM), and pressmud (PRM) at a rate of 1% w/w were tested for Cd immobilization in soil and mineral nutrient availability to wheat crop grown in Cd-spiked soil (6.0 mg kg1 ). The amendments were added in Cd-spiked soil before 12 days of seed sowing and wheat plants were harvested after maturity (115 days after sowing). The findings revealed that the use of amendments improved the number of grains per spike, straw and grain yield of wheat relative to control treatment. The treatments minimized the Cd and enhanced the contents of zinc (Zn), nitrogen (N), phosphorus (P), and potassium (K) in the leaves and grain of the wheat plants. Cadmium concentrations decreased by 35, 38, 68, and 63% in wheat grain, and grain yield increased by 19, 31, 68, and 58% with the application of FYM, PRM, MSB, and RSB, respectively. Overall, the application of MSB was more efficient in decreasing Cd concentrations in leaf and grains of wheat as compared to other conventional organic amendments.


Asunto(s)
Cadmio , Contaminantes del Suelo , Carbón Orgánico , Granjas , Estiércol , Nutrientes , Suelo , Triticum
6.
Physiol Plant ; 172(2): 317-333, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32562257

RESUMEN

This study was carried out to assess the influence of trehalose, a non-reducing disaccharide involved in improving plant stress tolerance, on two cultivars (Hysun 33 and FH 598) of sunflower (Helianthus annuus L.) grown under control and drought stress conditions. At pre-flowering stage, varying concentrations (10, 20 and 30 mM) of trehalose were applied to the foliage. Drought stress significantly suppressed the plant growth, total soluble proteins, chlorophyll, achene yield per plant, oil percentage, organic contents, as well as oil palmitic and linoleic acids in both sunflower cultivars. External application of trehalose significantly reduced RMP (relative membrane permeability), and the accumulation of H2 O2 (hydrogen peroxide), while a considerable improvement was recorded in shoot fresh and shoot and root dry weights, total soluble proteins, glycinebetaine, AsA (ascorbic acid), total phenolics, achene yield per plant, oil contents, inorganic and organic contents, and the activities of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) enzymes under water-limited regimes. The cultivar Hysun 33 was superior to the other cultivar in plant growth, RMP, glycinebetaine, proline, achene yield per plant, oil contents, and palmitic and linoleic acids. Overall, foliar-applied trehalose improved plant growth, oxidative defense system, yield and oil composition of sunflower under drought stress conditions.


Asunto(s)
Helianthus , Antioxidantes , Catalasa , Sequías , Hojas de la Planta , Trehalosa
7.
Physiol Plant ; 172(2): 896-911, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33314151

RESUMEN

Research on plant growth-promoting bacteria (PGPR) revealed an effective role of bacterial volatile organic compounds (VOCs) in stress alleviation. Out of 15 PGPR strains, infection with VOCs from Pseudomonas pseudoalcaligenes' resulted in maximum germination, growth promotion, and drought tolerance in maize plants. The VOCs of P. pseudoalcaligenes caused induced systemic tolerance in maize plants during 7 days of drought stress. The VOCs exposed plants displayed resistance to drought stress by reducing electrolyte leakage and malondialdehyde content and increasing the synthesis of photosynthetic pigments, proline, and phytohormones contents. Maize plants revealed enhanced resistance by showing higher activities of antioxidant defense enzymes both in shoots and roots under drought stress. Activities of antioxidant enzymes were more pronounced in shoots than roots. Gas chromatography and mass spectrophotometric (GC-MS) analysis comparing VOCs produced by the most efficient P. pseudoalcaligenes strain and inefficient strains of Pseudomonas sp. grown in culture media revealed nine compounds that they had in common. However, dimethyl disulfide, 2,3-butanediol, and 2-pentylfuran were detected only in P. pseudoalcaligenes, indicating these compounds are potential candidates for drought stress induction. Further studies are needed to unravel the molecular mechanisms of VOCs-mediated systemic drought tolerance in plants related to each identified VOC.


Asunto(s)
Pseudomonas pseudoalcaligenes , Compuestos Orgánicos Volátiles , Sequías , Desarrollo de la Planta , Zea mays
8.
Ecotoxicol Environ Saf ; 208: 111627, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396147

RESUMEN

A pot study was conducted to explore the effectiveness of zinc oxide nanoparticles (ZnO NPs) foliar exposure on growth and development of wheat, zinc (Zn) and cadmium (Cd) uptake in Cd-contaminated soil under various moisture conditions. Four different levels (0, 25, 50, 100 mg/L) of these NPs were foliar-applied at different time periods during the growth of wheat. Two soil moisture regimes (70% and 35% of water holding capacity) were maintained from 6 weeks of germination till plant harvesting. The results revealed that the growth of wheat increased with ZnO NPs treatments. The best results were found in 100 mg/L ZnO NPs under normal moisture level. The lowest Cd and highest Zn concentrations were also examined when 100 mg/L NPs were applied without water deficit stress. In grain, Cd concentrations decreased by 26%, 81% and 87% in normal moisture while in water deficit conditions, the Cd concentrations decreased by 35%, 66% and 81% compared to control treatment when ZnO NPs were used at 25, 50 and 100 mg/L. The foliar exposure of ZnO NPs boosted up the leaf chlorophyll contents and also decreased the oxidative stress and enhanced the leaf superoxide dismutase and peroxidase activities than the control. It can be suggested that foliar use of ZnO NPs might be an efficient way for increasing wheat growth and yield with maximum Zn and minimum Cd contents under drought stress while decreasing the chances of NPs movement to other environmental compartment which may be possible in soil applied NPs.


Asunto(s)
Cadmio/toxicidad , Sequías , Nanopartículas/química , Contaminantes del Suelo/toxicidad , Triticum/fisiología , Óxido de Zinc/química , Cadmio/análisis , Clorofila , Grano Comestible/química , Contaminación Ambiental , Estrés Oxidativo , Hojas de la Planta/química , Suelo , Contaminantes del Suelo/análisis , Triticum/crecimiento & desarrollo , Agua , Zinc/análisis
9.
Ecotoxicol Environ Saf ; 215: 112149, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773153

RESUMEN

The aim of present work was to evaluate the effects of titanium dioxide nanoparticles (TiO2 NPs) on rice's growth (Oryza sativa L.) and nutrient availability under different soil textures. Greenhouse experiment was carried out with three soil textures (sandy loam, silt loam and silty clay loam) and two concentrations of TiO2 NPs (500, 750 mg kg-1). Control (without TiO2 NPs) was also maintained for the comparison. Growth parameters including chlorophyll content, root/shoot length, fresh/dry biomass and nutrients' uptake including calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorous (P), potassium (K) and zinc (Zn) were determined. The results revealed that application of 500 mg kg-1 TiO2 NPs in silty clay loam soil increased the chlorophyll content (3.3-folds), root length (49%), shoot length (31%), root and shoot biomass (41% & 39%, respectively) as compared to other soil textures. The maximum plant growth was observed in silty clay loam > silt loam > sandy loam. Concentration of Cu, Fe, P and Zn in shoot was increased by 8 - , 2.3 - , 0.4 - , 0.05 -folds in silty clay loam upon 500 mg kg-1 TiO2 NPs application as compared to the control. Backward selection method to model the parameters (nutrients in soil) for the response variables (root/shoot length and biomass) showed that Ca, Fe, P are the main nutrients responsible for the increase in plant length and biomass. Overall, the growth of rice was better in silty clay loam at 500 mg kg-1 of TiO2 NPs.


Asunto(s)
Oryza/fisiología , Contaminantes del Suelo/metabolismo , Transporte Biológico , Biomasa , Arcilla , Nanopartículas , Compuestos Orgánicos , Oryza/crecimiento & desarrollo , Fósforo , Desarrollo de la Planta , Suelo , Contaminantes del Suelo/análisis , Titanio
10.
Ecotoxicol Environ Saf ; 215: 112139, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761378

RESUMEN

Cadmium (Cd) accumulation in arable lands has become a serious matter for food security. Among various approaches, the application of nanoparticles (NPs) for remediation of contaminated water and soils is attaining more popularity worldwide. The current field experiment was executed to explore the impacts of single and combined use of ZnO NPs, Fe NPs and Si NPs on wheat growth and Cd intake by plants in a Cd-contaminated field. Wheat was sown in a field which was contaminated with Cd and was irrigated with the raw-city-effluent while NPs were applied as foliar spray alone and in all possible combinations. The data revealed that straw and grain yields were enhanced in the presence of NPs over control. Chlorophyll, carotenoids contents and antioxidants activities were enhanced while electrolyte leakage was reduced with all NPs over control. In comparison with control, Cd uptake in wheat straw was reduced by 84% and Cd uptake in grain was reduced by 99% in T8 where all three NPs were foliar-applied simultaneously. Zinc (Zn) and iron (Fe) contents were increased in those plants where ZnO and Fe NPs were exogenously applied which revealed that ZnO and Fe NPs enhanced the bio-fortification of Zn and Fe in wheat grains. Overall, foliar application of different NPs is beneficial for better wheat growth, yield, nutrients uptake and to lessen the Cd intake by plants grown in Cd-contaminated soil under real field conditions.


Asunto(s)
Cadmio/metabolismo , Nanopartículas/química , Contaminantes del Suelo/metabolismo , Triticum/fisiología , Antioxidantes , Cadmio/análisis , Cadmio/toxicidad , Clorofila , Grano Comestible/química , Contaminación Ambiental , Hojas de la Planta/química , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Triticum/crecimiento & desarrollo , Zinc/análisis , Óxido de Zinc
11.
Physiol Plant ; 168(2): 345-360, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31343742

RESUMEN

We conducted a study to evaluate the interactive effect of NO and H2 S on the cadmium (Cd) tolerance of wheat. Cadmium stress considerably reduced total dry weight, chlorophyll a and b content and ratio of Fv/Fm by 36.7, 48.6, 26.7 and 19.5%, respectively, but significantly enhanced the levels of hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA), endogenous H2 S and NO, and the activities of antioxidant enzymes. Exogenously applied sodium nitroprusside (SNP) and sodium hydrosulfide (NaHS), donors of NO and H2 S, respectively, enhanced total plant dry matter by 47.8 and 39.1%, chlorophyll a by 92.3 and 61.5%, chlorophyll b content by 29.1 and 27.2%, Fv/Fm ratio by 19.7 and 15.2%, respectively, and the activities of antioxidant enzymes, but lowered oxidative stress and proline content in Cd-stressed wheat plants. NaHS and SNP also considerably limited both the uptake and translocation of Cd, thereby improving the levels of some key mineral nutrients in the plants. Enhanced levels of NO and H2 S induced by NaHS were reversed by hypotuarine application, but they were substantially reduced almost to 50% by cPTIO (a NO scavenger) application. Hypotuarine was not effective, but cPTIO was highly effective in reducing the levels of NO and H2 S produced by SNP in the roots of Cd-stressed plants. The results showed that interactive effect of NO and H2 S can considerably improve plant resistance against Cd toxicity by reducing oxidative stress and uptake of Cd in plants as well as by enhancing antioxidative defence system and uptake of some essential mineral nutrients.


Asunto(s)
Antioxidantes/fisiología , Cadmio/toxicidad , Sulfuro de Hidrógeno/farmacología , Óxido Nítrico/farmacología , Estrés Oxidativo , Triticum/efectos de los fármacos , Clorofila A/análisis , Peróxido de Hidrógeno/análisis , Malondialdehído/análisis , Triticum/fisiología
12.
Physiol Plant ; 168(2): 289-300, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31209886

RESUMEN

The present study evaluated the physiological and biochemical mechanisms through which exogenous sodium hydrosulfide (H2 S donor) mitigates chromium (Cr) stress in cauliflower. The different levels of Cr included 0, 10, 100 and 200 µM. Results reported that Cr exposure reduced growth and biomass, chlorophyll (Chl) contents, gas exchange parameters and enzymatic antioxidants. Chromium stress enhanced the production of electrolyte leakage (EL), hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA) contents and increased Cr content in the roots, stem, leaf and flowers. Exogenous H2 S improved the physiological and biochemical attributes of Cr-stressed cauliflower. Hydrogen sulfide decreased Cr content in different parts of Cr-stressed plants, whereas it increased the Chl contents and gas exchange attributes. H2 S reduced the EL, H2 O2 and MDA concentrations, enhancing the antioxidant enzymes activities in Cr-stressed roots and leaves compared to the Cr treatments alone. Collectively, our results provide an insight into the protective role of H2 S in Cr-stressed cauliflower and suggest H2 S as a potential candidate in reducing Cr toxicity in cauliflower and other crops.


Asunto(s)
Antioxidantes/metabolismo , Brassica/efectos de los fármacos , Cromo/toxicidad , Sulfuro de Hidrógeno/farmacología , Contaminantes del Suelo/toxicidad , Clorofila , Peróxido de Hidrógeno , Malondialdehído , Estrés Oxidativo
13.
Ecotoxicol Environ Saf ; 196: 110483, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32247238

RESUMEN

A study was performed to assess if nitrate reductase (NR) participated in brassinosteroid (BR)-induced cadmium (Cd) stress tolerance primarily by accelerating the ascorbate-glutathione (AsA-GSH) cycle. Prior to initiating Cd stress (CdS), the pepper plants were sprayed with 0.5 µM 24-epibrassinolide (EBR) every other day for 10 days. Thereafter the seedlings were subjected to control or CdS (0.1 mM CdCl2) for four weeks. Cadmium stress decreased the plant growth related attributes, water relations as well as the activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but enhanced proline content, leaf Cd2+ content, oxidative stress-related traits, activities of ascorbate peroxidase (APX) and glutathione reductase (GR), and the activities of antioxidant defence system-related enzymes as well as NR activity and endogenous nitric oxide content. EBR reduced leaf Cd2+ content and oxidative stress-related parameters, enhanced plant growth, regulated water relations, and led to further increases in proline content, AsA-GSH cycle-related enzymes' activities, antioxidant defence system-related enzymes as well as NR activity and endogenous nitric oxide content. The EBR and the inhibitor of NR (tungstate) reversed the positive effects of EBR by reducing NO content, showing that NR could be a potential contributor of EBR-induced generation of NO which plays an effective role in tolerance to CdS in pepper plants by accelerating the AsA-GSH cycle and antioxidant enzymes.


Asunto(s)
Ácido Ascórbico/metabolismo , Brasinoesteroides/farmacología , Cadmio/metabolismo , Glutatión/metabolismo , Nitrato-Reductasa/metabolismo , Antioxidantes/metabolismo , Cadmio/toxicidad , Capsicum/efectos de los fármacos , Capsicum/enzimología , Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Redes y Vías Metabólicas/efectos de los fármacos , Nitrato-Reductasa/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos
14.
Physiol Mol Biol Plants ; 26(12): 2435-2452, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33424157

RESUMEN

ABSTRACT: Untreated wastewater contains toxic amounts of heavy metals such as chromium (Cr), which poses a serious threat to the growth and physiology of plants when used in irrigation. Though, Cr is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. To explore the interactive effects of micronutrients with amino acid chelators [iron-lysine (Fe-lys) and zinc-lysine (Zn-lys)], pot experiments were conducted in a controlled environment, using spinach (Spinacia oleracea L.) plant irrigated with tannery wastewater. S. oleracea was treated without Fe and Zn-lys (0 mg/L Zn-lys and 0 mg/L Fe-lys) and also treated with various combinations of (interactive application) Fe and Zn-lys (10 mg/L Zn-lys and 5 mg/L Fe-lys), when cultivated at different levels [0 (control) 33, 66 and 100%) of tannery wastewater in the soil having a toxic level of Cr in it. According to the results, we have found that, high concentration of Cr in the soil significantly (P < 0.05) reduced plant height, fresh biomass of roots and leaves, dry biomass of roots and leaves, root length, number of leaves, leaf area, total chlorophyll contents, carotenoid contents, transpiration rate (E), stomatal conductance (gs), net photosynthesis (PN), and water use efficiency (WUE) and the contents of Zn and Fe in the plant organs without foliar application of Zn and Fe-lys. Moreover, phytotoxicity of Cr increased malondialdehyde (MDA) contents in the plant organs (roots and leaves), which induced oxidative damage in S. oleracea manifested by the contents of hydrogen peroxide (H2O2) and membrane leakage. The negative effects of Cr toxicity could be overturned by Zn and Fe-lys application, which significantly (P < 0.05) increase plant growth, biomass, chlorophyll content, and gaseous exchange attributes by reducing oxidative stress (H2O2, MDA, EL) and increasing the activities of various antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) and ascorbate peroxidase (APX). Furthermore, the supplementation of Zn and Fe-lys increased the contents of essential nutrients (Fe and Zn) and decreased the content of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. Taken together, foliar supplementation of Zn and Fe-lys alleviates Cr toxicity in S. oleracea by increased morpho-physiological attributes of the plants, decreased Cr contents and increased micronutrients uptake by the soil, and can be an effective in heavy metal toxicity remedial approach for other crops.

15.
BMC Plant Biol ; 18(1): 146, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012086

RESUMEN

BACKGROUND: This study assessed the effects of 24-epibrassinolide (EBL, 10-7M) and silicon (2 mM) on the alleviation of cadmium (Cd, 150 mg L-1) toxicity in Pisum sativum L. seedlings via the modulation of growth, antioxidant defense, glyoxalase system, and nutrient uptake. RESULTS: Shoot and root lengths declined by 46.43% and 52.78%, respectively, following Cd stress. Shoot and root dry weights also declined with Cd toxicity. Biochemical and physiological aspects exhibit significant decline including total chlorophyll (33.09%), carotenoid (51.51%), photosynthetic efficiency (32.60%), photochemical quenching (19.04%), leaf relative water content (40.18%), and gas exchange parameters (80.65%). However, EBL or Si supplementation alone or in combination modulates the previously mentioned parameters. Cadmium stress increased proline and glycine betaine (GB) contents by 4.37 and 2.41-fold, respectively. Exposure of plants to Cd stress increased the accumulation of H2O2, malondialdehyde content, electrolyte leakage, and methylglyoxal, which declined significantly with EBL and Si supplementation, both individually and in combination. Similarly, Cd stress adversely affected enzymatic and non-enzymatic antioxidants, but EBL and/or Si supplementation maintained antioxidant levels. Glyoxalase I (GlyI) accumulated after Cd stress and increased further with the application of EBL and Si. However, GlyII content declined after Cd stress but increased with supplementation of EBL and Si. Cadmium accumulation occurred in the following order: roots > shoots>leaves. Supplementation with EBL and Si, individually and in combination reduced Cd accumulation and enhanced the uptake of macronutrients and micronutrients in shoots and roots, which declined with Cd toxicity. CONCLUSION: The application of 24-EBL and Si, individually and in combination, alleviated the adverse effects of Cd by improving growth, biochemical parameters, nutrient uptake, osmolyte accumulation, and the anti-oxidative defense and glyoxalase systems in Pisum sativum seedlings.


Asunto(s)
Antioxidantes/metabolismo , Brasinoesteroides/farmacología , Cadmio/toxicidad , Lactoilglutatión Liasa/metabolismo , Nutrientes/metabolismo , Pisum sativum/efectos de los fármacos , Plantones/efectos de los fármacos , Silicio/farmacología , Esteroides Heterocíclicos/farmacología , Tioléster Hidrolasas/metabolismo , Betaína/metabolismo , Clorofila/metabolismo , Pisum sativum/metabolismo , Pisum sativum/fisiología , Hojas de la Planta/metabolismo , Prolina/metabolismo , Piruvaldehído/metabolismo , Plantones/metabolismo , Plantones/fisiología
16.
Molecules ; 23(2)2018 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-29439470

RESUMEN

Melatonin is a pleiotropic signal molecule that plays critical roles in regulating plant growth and development, as well as providing physiological protections against various environmental stresses. Nonetheless, the mechanisms for melatonin-mediated pollen thermotolerance remain largely unknown. In this study, we report that irrigation treatment with melatonin (20 µM) effectively ameliorated high temperature-induced inactivation of pollen and inhibition of pollen germination in tomato (Solanum lycopersicum) plants. Melatonin alleviated reactive oxygen species production in tomato anthers under high temperature by the up-regulation of the transcription and activities of several antioxidant enzymes. Transmission electron micrograph results showed that high temperature-induced pollen abortion is associated with a premature degeneration of the tapetum cells and the formation of defective pollen grains with degenerated nuclei at the early uninuclear microspore stage, whilst melatonin protected degradation of organelles by enhancing the expression of heat shock protein genes to refold unfolded proteins and the expression of autophagy-related genes and formation of autophagosomes to degrade denatured proteins. These findings suggest a novel function of melatonin to protect pollen activity under high temperature and support the potential effects of melatonin on reproductive development of plants.


Asunto(s)
Antioxidantes/farmacología , Regulación de la Expresión Génica de las Plantas , Melatonina/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Polen/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/agonistas , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proteínas de Choque Térmico/agonistas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Calor , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Desnaturalización Proteica , Proteolisis , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Termotolerancia/efectos de los fármacos , Termotolerancia/genética
17.
Z Naturforsch C J Biosci ; 69(11-12): 452-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25854765

RESUMEN

Cadmium, a non-essential and toxic metal, negatively affects plant growth and productivity, and alters the plant's physiological processes necessary for its survival. The present study was designed to explore the individual and combined effects of calcium and salicylic acid (SA) on the morphology and physiology of Brassica juncea L. cv. Varuna under cadmium stress. The application of calcium (2 mM) through the soil and/or SA (10-5 M) as foliar spray enhanced the growth, photosynthetic parameters, and proline content determined after 45 days of treatment. The application of cadmium (6 mg kg-1) through the soil was toxic and decreased both growth and the photosynthetic parameters. The application of calcium and SA in combination was most effective in alleviating the harmful effects of cadmium on growth and photosynthesis. Calcium and SA clearly induced plant protection mechanisms by enhancing proline and chlorophyll accumulation in the leaves.


Asunto(s)
Calcio/administración & dosificación , Planta de la Mostaza/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Ácido Salicílico/administración & dosificación , Cadmio/toxicidad , Clorofila/metabolismo , Planta de la Mostaza/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Estrés Fisiológico/fisiología
18.
Plant Physiol Biochem ; 207: 108320, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183901

RESUMEN

Water stress (WS) poses a significant threat to global food and energy security by adversely affecting soybean growth and nitrogen metabolism. This study explores the synergistic effects of exogenous salicylic acid (SA, 0.5 mM) and thiourea (TU, 400 mg L-1), potent plant growth regulators, on soybean responses under WS conditions. The treatments involved foliar spraying for 3 days before inducing WS by reducing soil moisture to 50% of field capacity, followed by 2 weeks of cultivation under normal or WS conditions. WS significantly reduced plant biomass, chlorophyll content, photosynthetic efficiency, water status, protein content, and total nitrogen content in roots and leaves. Concurrently, it elevated levels of leaf malondialdehyde, H2O2, proline, nitrate, and ammonium. WS also triggered an increase in antioxidant enzyme activity and osmolyte accumulation in soybean plants. Application of SA and TU enhanced the activities of key enzymes crucial for nitrogen assimilation and amino acid synthesis. Moreover, SA and TU improved plant growth, water status, chlorophyll content, photosynthetic efficiency, protein content, and total nitrogen content, while reducing oxidative stress and leaf proline levels. Indeed, the simultaneous application of SA and TU demonstrated a heightened impact compared to their separate use, suggesting a synergistic interaction. This study underscores the potential of SA and TU to enhance WS tolerance in soybean plants by modulating nitrogen metabolism and mitigating oxidative damage. These findings hold significant promise for improving crop productivity and quality in the face of escalating water limitations due to climate change.


Asunto(s)
Antioxidantes , Nitrógeno , Antioxidantes/metabolismo , Glycine max , Deshidratación , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Tiourea/farmacología , Peróxido de Hidrógeno/metabolismo , Clorofila/metabolismo , Plantas/metabolismo , Prolina/metabolismo
19.
J Hazard Mater ; 451: 131085, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36870130

RESUMEN

Vanadium (V) induced hazardous effects posturing a serious concern on crop production as well as food security. However, the nitric oxide (NO)-mediated alleviation of V-induced oxidative stress in soybean seedlings is still unknown. Therefore, this research was designed to explore the effects of exogenous NO to mitigate the V-induced phytotoxicity in soybean plants. Our upshots disclosed that NO supplementation considerably improved the plant biomass, growth, and photosynthetic attributes by regulating the carbohydrates, and plants biochemical composition, which further improved the guard cells, and stomatal aperture of soybean leaves. Additionally, NO regulated the plant hormones, and phenolic profile which restricted the V contents absorption (65.6%), and translocation (57.9%) by maintaining the nutrient acquisition. Furthermore, it detoxified the excessive V contents, and upsurged the antioxidants defense mechanism to lower the MDA, and scavenge ROS production. The molecular analysis further verified the NO-based regulation of lipid, sugar production, and degradation as well as detoxification mechanism in the soybean seedlings. Exclusively, we elaborated very first time the behind mechanism of V-induced oxidative stress alleviation by exogenous NO, hence illustrating the NO supplementation role as a stress alleviating agent for soybean grown in V contaminated areas to elevate the crop development and production.


Asunto(s)
Antioxidantes , Glycine max , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glycine max/metabolismo , Óxido Nítrico/metabolismo , Vanadio/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Plantones
20.
Environ Pollut ; 335: 122292, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536477

RESUMEN

The study aimed to investigate the role of hydrogen sulfide (H2S) in regulating chromium stress (Cr-S) tolerance of tomato plants treated with citric acid (CA). Prior to the Cr treatment, tomato plants were foliar-fed with CA (100 µM) daily for 3 days. Subsequently, the plants were grown for another ten days in a hydroponic system in a 50 µM Cr (VI) solution. Chromium treatment reduced photosynthetic pigments and plant biomass, but boosted the levels of hydrogen peroxide (H2O2) malondialdehyde (MDA), H2S, phytochelatins (PCs), and glutathione (GSH), electrolyte leakage (EL), and antioxidant enzyme activity in tomato plants. However, the foliar spray of CA mitigated the levels of H2O2, MDA, and EL, promoted plant growth and chlorophyll content, enhanced antioxidant enzymes' activities, and increased H2S production in Cr-S-tomato plants. CA also increased the levels of GSH and PCs, potentially reducing the toxicity of Cr through regulated sequestration. Additionally, the application of sodium hydrogen sulfide (NaHS), a donor of H2S, improved CA-induced Cr stress tolerance. The addition of CA promoted Cr accumulation in root cell wall and leaf vacuoles to suppress its toxicity. To assess the involvement of H2S in CA-mediated Cr-S tolerance, 0.1 mM hypotaurine (HT), an H2S scavenger, was provided to the control and Cr-S-plants along with CA and CA + NaHS. HT reduced the beneficial effects of CA by decreasing H2S production in tomato plants. However, the NaHS addition with CA + HT inverted the adverse impacts of HT, indicating that H2S is required for CA-induced Cr-S tolerance in tomato plants.


Asunto(s)
Sulfuro de Hidrógeno , Solanum lycopersicum , Sulfuro de Hidrógeno/farmacología , Antioxidantes/metabolismo , Cromo/toxicidad , Ácido Cítrico/farmacología , Peróxido de Hidrógeno/farmacología , Glutatión/metabolismo , Fitoquelatinas , Plantones , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA