Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985610

RESUMEN

Essential oils (EOs) obtained by hydro-distillation from different parts of twigs (EOT), leaves (EOL), and fruits (EOF) of Eucalyptus gunnii Hook. f. were screened for their chemical composition, insecticidal, repellence, and antibacterial properties. Based on GC and GC/MS analysis, 23 constituents were identified across the twigs, leaves, and fruits, with 23, 23, and 21 components, respectively. The primary significant class was oxygenated monoterpenes (82.2-95.5%). The main components were 1,8-cineole (65.6-86.1%), α-terpinyl acetate (2.5-7.6%), o-cymene (3.3-7.5%), and α-terpineol (3.3-3.5%). All three EOs exhibited moderate antibacterial activities. EOL was found to have higher antibacterial activity against all tested strains except Dickeya solani (CFBP 8199), for which EOT showed more potency. Globally, Dickeya solani (CFBP 8199) was the most sensitive (MIC ≤ 2 mg/mL), while the most resistant bacteria were Dickeya dadantii (CFBP 3855) and Pectobacterium carotovorum subsp. carotovorum (CFBP 5387). Fumigant, contact toxicity, and repellent bioassays showed different potential depending on plant extracts, particularly EOT and EOL as moderate repellents and EOT as a medium toxicant.


Asunto(s)
Eucalyptus , Repelentes de Insectos , Myrtaceae , Aceites Volátiles , Aceites Volátiles/química , Eucalyptus/química , Myrtaceae/química , Hojas de la Planta/química , Repelentes de Insectos/química , Antibacterianos/química , Aceites de Plantas/química
2.
Front Chem ; 12: 1419242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911996

RESUMEN

DNA gyrase and topoisomerase IV show great potential as targets for antibacterial medicines. In recent decades, various categories of small molecule inhibitors have been identified; however, none have been effective in the market. For the first time, we developed a series of disalicylic acid methylene/Schiff bases hybrids (5a-k) to act as antibacterial agents targeting DNA gyrase and topoisomerase IV. The findings indicated that the new targets 5f-k exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria, with efficacy ranging from 75% to 115% of the standard ciprofloxacin levels. Compound 5h demonstrated the greatest efficacy compared to the other compounds tested, with minimum inhibitory concentration (MIC) values of 0.030, 0.065, and 0.060 µg/mL against S. aureus, E. coli, and P. aeruginosa. 5h had a MIC value of 0.050 µg/mL against B. subtilis, which is five times less potent than ciprofloxacin. The inhibitory efficacy of the most potent antibacterial derivatives 5f, 5h, 5i, and 5k against E. coli DNA gyrase was assessed. The tested compounds demonstrated inhibitory effects on E. coli DNA gyrase, with IC50 values ranging from 92 to 112 nM. These results indicate that 5f, 5h, 5i, and 5k are more effective than the reference novobiocin, which had an IC50 value of 170 nM. Compounds 5f, 5h, 5i, and 5k were subjected to additional assessment against E. coli topoisomerase IV. Compounds 5h and 5i, which have the highest efficacy in inhibiting E. coli gyrase, also demonstrated promising effects on topoisomerase IV. Compounds 5h and 5i exhibit IC50 values of 3.50 µM and 5.80 µM, respectively. These results are much lower and more potent than novobiocin's IC50 value of 11 µM. Docking studies demonstrate the potential of compound 5h as an effective dual inhibitor against E. coli DNA gyrase and topoisomerase IV, with ADMET analysis indicating promising pharmacokinetic profiles for antibacterial drug development.

3.
Braz J Microbiol ; 54(4): 2799-2805, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831330

RESUMEN

This study describes the discovery of a variety of quinoline2-one derivatives with significant antibacterial action vs a spectrum of multidrug-resistant Gram-positive bacterial strains, especially methicillin-resistant Staphylococcus aureus (MRSA). Compounds 6c, 6l, and 6o exhibited significant antibacterial activity versus the Gram-positive bacterial pathogens evaluated. In comparison to the reference daptomycin, compound 6c demonstrated the most effective activity among the assessed derivatives, with MIC concentrations of 0.75 µg/mL versus MRSA and VRE and 2.50 µg/mL against MRSE. We also reported on these compounds' biofilm and dihydrofolate reductase inhibitory activities. Compound 6c showed the greatest antibiofilm action in a dose-dependent way and a substantial decrease of biofilm development in the MRSA ACL51 strain at concentrations of 0.5, 0.25, and 0.12 MIC, with reductions of 79%, 55%, and 38%, consecutively, whereas the corresponding values for vancomycin were 20%, 12%, and 9%. These findings imply that these quinoline compounds could be used to develop a new category of antibiotic representatives to prevent Gram-positive drug-resistant bacterial strains.


Asunto(s)
Daptomicina , Staphylococcus aureus Resistente a Meticilina , Quinolinas , Antibacterianos/farmacología , Daptomicina/farmacología , Vancomicina/farmacología , Quinolinas/farmacología , Pruebas de Sensibilidad Microbiana
4.
Bioinorg Chem Appl ; 2023: 1287325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38623482

RESUMEN

Zinc molybdate nanoparticles with molybdate are synthesized through green method with different salt precursors using Moringa oleifera leaf extract. Those nanoparticles had structural, vibrational, and morphological properties, which were determined by X-ray diffraction (XRD). The crystalline size of synthesized zinc molybdate was 24.9 nm. Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) clearly showed the attachment of molybdate with ZnO. The synthesized nanomaterial was also characterized through UV-visible spectroscopy which had 4.40 eV band gap energy. Those nanoparticles were also characterized via thermogravimetric analysis (TGA-DTA) and photoluminance spectroscopy (PL). ZnMoO4 had photocatalytic property via methylene blue dye. After 190 minutes, the dye changed to colourless from blue colour. The degradation efficiency was around 92.8%. It also showed their antibacterial effect via Escherichia coli and Staphylococcusaureus bacterial strains. In the presence of light and air, nanoparticles of ZnMoO4 inhibit the growth of cells of E. coli and S. aureus bacterial strains because of ROS (reactive oxygen species) generation. Because of the formation of singlet oxygen (O2∗-), hydrogen oxide radical (-OH∗), and hydrogen peroxide (H2O2), ZnMoO4 showed photodegradation reaction against aq. solution of methylene blue dye at 6 pH with constant time interval. With time, the activity of ZnMoO4 also decreased because of the generation of a layer of hydrogen oxide (-OH) on nanomaterial surface, which could be washed with ethanol and distilled water. After drying, the catalytic Zinc molybdate nanoparticles could be reused again in the next catalytic reaction.

5.
Vet Sci ; 10(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851378

RESUMEN

(1) Background: Cystic echinococcosis is a zoonotic helminth disease that causes severe economic losses. The study aimed to assess the prevalence and viability of cystic echinococcosis in examined camels. In addition, assessing the histological, morphological, oxidative, and antioxidant state related to the cystic echinococcosis infection; (2) Methods: The study was performed on 152 slaughtered dromedary camels between March and September 2022 at El-Basatin abattoir in Cairo Governorate, Egypt; (3) Results: The results revealed that the prevalence of hydatidosis was 21.7% in slaughtered camel and the highest infection rate observed in lungs was 87.87%, while it was 9% in livers. Camels' liver infections were rare, whereas their lung infections were more common. By comparing to non-infected camels, the level of MAD was significantly increased with hydatid cysts infection, while the level of GSH, SOD and CAT was significantly decreased. Histopathological section of camel cyst revealed layered membranes surrounded by a zone of cellular infiltration and an outermost fibrous tissue reaction. In addition, there was evidence of atelectasis, emphysema, hemorrhage, congestion, and fibrosis in the surrounding tissues. Nonetheless, the degeneration and necrosis of hepatocytes and other pathological alterations in liver cyst sections were remarkably comparable to those seen in the lungs. Furthermore, calcification was detected.

6.
Microorganisms ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37512884

RESUMEN

The study aimed to investigate the antitumor efficacy of anti-LMP1 antibodies in EBV-positive nasopharyngeal and stomach cell lines and xenograft models. The study also examined the NF-κB expression and cell cycle activation of NPC-serum-exosome-associated LMP1. Anti-LMP1 antibody treatment before or during cell implantation prevented tumor growth in nude mice. A small dose of antibodies resulted in complete tumor regression for at least three months after the tumors had grown in size. The consumption of antigen-antibody complexes by tumor cells limited tumor growth. In vitro experiments showed that anti-LMP1 antibodies killed EBV-positive NPC- or GC-derived epithelial cell lines and EBV-positive human B-cell lines but not EBV-negative cell lines. Treatment with anti-LMP1 reduced NF-κB expression in cells. The animal model experiments showed that anti-LMP1 inhibited and prevented NPC- or GC-derived tumor growth. The results suggest that LMP1 antibody immunotherapy could cure nasopharyngeal cancer, EBV-positive gastric carcinoma, and EBV-associated lymphomas. However, further validation of these findings is required through human clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA