Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33631118

RESUMEN

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos/genética , SARS-CoV-2/inmunología , Vacunas de ADN/inmunología , Virus Vaccinia/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Vacunas contra la COVID-19/genética , Modelos Animales de Enfermedad , Expresión Génica , Orden Génico , Inmunofenotipificación , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macaca , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunación/métodos , Vacunas de ADN/genética
2.
Nature ; 605(7911): 640-652, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35361968

RESUMEN

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Evolución Biológica , Vacunas contra la COVID-19 , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevención & control , Variantes Farmacogenómicas , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología , Virulencia
3.
PLoS Pathog ; 19(5): e1011219, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37253061

RESUMEN

Young men who have sex with men (YMSM) are disproportionately affected by HIV and bacterial sexually transmitted infections (STI) including gonorrhea, chlamydia, and syphilis; yet research into the immunologic effects of these infections is typically pursued in siloes. Here, we employed a syndemic approach to understand potential interactions of these infections on the rectal mucosal immune environment among YMSM. We enrolled YMSM aged 18-29 years with and without HIV and/or asymptomatic bacterial STI and collected blood, rectal secretions, and rectal tissue biopsies. YMSM with HIV were on suppressive antiretroviral therapy (ART) with preserved blood CD4 cell counts. We defined 7 innate and 19 adaptive immune cell subsets by flow cytometry, the rectal mucosal transcriptome by RNAseq, and the rectal mucosal microbiome by 16S rRNA sequencing and examined the effects of HIV and STI and their interactions. We measured tissue HIV RNA viral loads among YMSM with HIV and HIV replication in rectal explant challenge experiments among YMSM without HIV. HIV, but not asymptomatic STI, was associated with profound alterations in the cellular composition of the rectal mucosa. We did not detect a difference in the microbiome composition associated with HIV, but asymptomatic bacterial STI was associated with a higher probability of presence of potentially pathogenic taxa. When examining the rectal mucosal transcriptome, there was evidence of statistical interaction; asymptomatic bacterial STI was associated with upregulation of numerous inflammatory genes and enrichment for immune response pathways among YMSM with HIV, but not YMSM without HIV. Asymptomatic bacterial STI was not associated with differences in tissue HIV RNA viral loads or in HIV replication in explant challenge experiments. Our results suggest that asymptomatic bacterial STI may contribute to inflammation particularly among YMSM with HIV, and that future research should examine potential harms and interventions to reduce the health impact of these syndemic infections.


Asunto(s)
Infecciones por Chlamydia , Gonorrea , Infecciones por VIH , Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Masculino , Humanos , Enfermedades de Transmisión Sexual/complicaciones , Enfermedades de Transmisión Sexual/diagnóstico , Enfermedades de Transmisión Sexual/terapia , Homosexualidad Masculina , ARN Ribosómico 16S , Infecciones por Chlamydia/complicaciones , Infecciones por VIH/complicaciones , Gonorrea/epidemiología
4.
Proc Natl Acad Sci U S A ; 119(33): e2202148119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939675

RESUMEN

Programmed death-1 (PD-1) blockade during chronic Simian immunodeficiency virus (SIV) infection results in restoration of CD8 T-cell function and enhances viral control. Here, we tested the therapeutic benefits of PD-1 blockade administered soon after anti-retrovial therapy (ART) interruption (ATI) by treating SIV-infected and ART-suppressed macaques with either an anti-PD-1 antibody (n = 7) or saline (n = 4) at 4 wk after ATI. Following ATI, the plasma viremia increased rapidly in all animals, and the frequency of SIV-specific CD8 T cells also increased in some animals. PD-1 blockade post ATI resulted in higher proliferation of total memory CD8 and CD4 T cells and natural killer cells. PD-1 blockade also resulted in higher proliferation of SIV-specific CD8 T cells and promoted their differentiation toward better functional quality. Importantly, four out of the seven anti-PD-1 antibody-treated animals showed a rapid decline in plasma viremia by 100- to 2300-fold and this was observed only in animals that showed measurable SIV-specific CD8 T cells post PD-1 blockade. These results demonstrate that PD-1 blockade following ATI can significantly improve the function of anti-viral CD8 T cells and enhance viral control and strongly suggests its potential synergy with other immunotherapies that induce functional CD8 T-cell response under ART. These results have important implications for HIV cure research.


Asunto(s)
Antirretrovirales , Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Memoria Inmunológica , Macaca mulatta , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Carga Viral/efectos de los fármacos , Viremia/tratamiento farmacológico
5.
PLoS Pathog ; 18(5): e1010488, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35503780

RESUMEN

Transmitted/founder (T/F) HIV-1 envelope proteins (Envs) from infected individuals that developed neutralization breadth are likely to possess inherent features desirable for vaccine immunogen design. To explore this premise, we conducted an immunization study in rhesus macaques (RM) using T/F Env sequences from two human subjects, one of whom developed potent and broad neutralizing antibodies (Z1800M) while the other developed little to no neutralizing antibody responses (R66M) during HIV-1 infection. Using a DNA/MVA/protein immunization protocol, 10 RM were immunized with each T/F Env. Within each T/F Env group, the protein boosts were administered as either monomeric gp120 or stabilized trimeric gp140 protein. All vaccination regimens elicited high titers of antigen-specific IgG, and two animals that received monomeric Z1800M Env gp120 developed autologous neutralizing activity. Using early Env escape variants isolated from subject Z1800M as guides, the serum neutralizing activity of the two immunized RM was found to be dependent on the gp120 V5 region. Interestingly, the exact same residues of V5 were also targeted by a neutralizing monoclonal antibody (nmAb) isolated from the subject Z1800M early in infection. Glycan profiling and computational modeling of the Z1800M Env gp120 immunogen provided further evidence that the V5 loop is exposed in this T/F Env and was a dominant feature that drove neutralizing antibody targeting during infection and immunization. An expanded B cell clonotype was isolated from one of the neutralization-positive RM and nmAbs corresponding to this group demonstrated V5-dependent neutralization similar to both the RM serum and the human Z1800M nmAb. The results demonstrate that neutralizing antibody responses elicited by the Z1800M T/F Env in RM converged with those in the HIV-1 infected human subject, illustrating the potential of using immunogens based on this or other T/F Envs with well-defined immunogenicity as a starting point to drive breadth.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Animales , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH/prevención & control , Humanos , Macaca mulatta , Productos del Gen env del Virus de la Inmunodeficiencia Humana
6.
PLoS Pathog ; 17(2): e1009257, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33556148

RESUMEN

Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Polisacáridos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Epítopos/inmunología , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Inmunización , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Vacunación
7.
J Immunol ; 206(5): 931-935, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33441437

RESUMEN

The magnitude of SARS-CoV-2-specific T cell responses correlates inversely with human disease severity, suggesting T cell involvement in primary control. Whereas many COVID-19 vaccines focus on establishing humoral immunity to viral spike protein, vaccine-elicited T cell immunity may bolster durable protection or cross-reactivity with viral variants. To better enable mechanistic and vaccination studies in mice, we identified a dominant CD8 T cell SARS-CoV-2 nucleoprotein epitope. Infection of human ACE2 transgenic mice with SARS-CoV-2 elicited robust responses to H2-Db/N219-227, and 40% of HLA-A*02+ COVID-19 PBMC samples isolated from hospitalized patients responded to this peptide in culture. In mice, i.m. prime-boost nucleoprotein vaccination with heterologous vectors favored systemic CD8 T cell responses, whereas intranasal boosting favored respiratory immunity. In contrast, a single i.v. immunization with recombinant adenovirus established robust CD8 T cell memory both systemically and in the respiratory mucosa.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Vacunación/métodos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/virología , Células Cultivadas , Proteínas de la Nucleocápside de Coronavirus/inmunología , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/inmunología , Antígeno HLA-A2/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177194

RESUMEN

Daily burden and clinical toxicities associated with antiretroviral therapy (ART) emphasize the need for alternative strategies to induce long-term human immunodeficiency virus (HIV) remission upon ART cessation. Broadly neutralizing antibodies (bNAbs) can both neutralize free virions and mediate effector functions against infected cells and therefore represent a leading immunotherapeutic approach. To increase potency and breadth, as well as to limit the development of resistant virus strains, it is likely that bNAbs will need to be administered in combination. It is therefore critical to identify bNAb combinations that can achieve robust polyfunctional antiviral activity against a high number of HIV strains. In this study, we systematically assessed the abilities of single bNAbs and triple bNAb combinations to mediate robust polyfunctional antiviral activity against a large panel of cross-clade simian-human immunodeficiency viruses (SHIVs), which are commonly used as tools for validation of therapeutic strategies targeting the HIV envelope in nonhuman primate models. We demonstrate that most bNAbs are capable of mediating both neutralizing and nonneutralizing effector functions against cross-clade SHIVs, although the susceptibility to V3 glycan-specific bNAbs is highly strain dependent. Moreover, we observe a strong correlation between the neutralization potencies and nonneutralizing effector functions of bNAbs against the transmitted/founder SHIV CH505. Finally, we identify several triple bNAb combinations comprising of CD4 binding site-, V2-glycan-, and gp120-gp41 interface-targeting bNAbs that are capable of mediating synergistic polyfunctional antiviral activities against multiple clade A, B, C, and D SHIVs.IMPORTANCE Optimal bNAb immunotherapeutics will need to mediate multiple antiviral functions against a broad range of HIV strains. Our systematic assessment of triple bNAb combinations against SHIVs will identify bNAbs with synergistic, polyfunctional antiviral activity that will inform the selection of candidate bNAbs for optimal combination designs. The identified combinations can be validated in vivo in future passive immunization studies using the SHIV challenge model.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Mutación , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Inmunización Pasiva , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
9.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31827000

RESUMEN

Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA/farmacología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Inmunización Secundaria , Inmunoglobulina G/inmunología , Células TH1/inmunología , Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Femenino , Centro Germinal/inmunología , Centro Germinal/patología , Humanos , Lípido A/análogos & derivados , Lípido A/farmacología , Macaca mulatta , Saponinas/farmacología , Células TH1/patología
10.
Am J Primatol ; 83(12): e23331, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34541703

RESUMEN

Nonhuman primates (NHPs) are a critical component of translational/preclinical biomedical research due to the strong similarities between NHP and human physiology and disease pathology. In some cases, NHPs represent the most appropriate, or even the only, animal model for complex metabolic, neurological, and infectious diseases. The increased demand for and limited availability of these valuable research subjects requires that rigor and reproducibility be a prime consideration to ensure the maximal utility of this scarce resource. Here, we discuss a number of approaches that collectively can contribute to enhanced rigor and reproducibility in NHP research.


Asunto(s)
Investigación Biomédica , Primates , Animales , Modelos Animales de Enfermedad , Reproducibilidad de los Resultados
11.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541829

RESUMEN

Modified vaccinia virus Ankara (MVA), an attenuated poxvirus, has been developed as a potential vaccine vector for use against cancer and multiple infectious diseases, including human immunodeficiency virus (HIV). MVA is highly immunogenic and elicits strong cellular and humoral responses in preclinical models and humans. However, there is potential to further enhance the immunogenicity of MVA, as MVA-infected cells undergo rapid apoptosis, leading to faster clearance of recombinant antigens and potentially blunting a greater response. Here, we generated MVA-B13R by replacing the fragmented 181R/182R genes of MVA with a functional anti-apoptotic gene, B13R, and confirmed its anti-apoptotic function against chemically induced apoptosis in vitro In addition, MVA-B13R showed a significant delay in induction of apoptosis in muscle cells derived from mice and humans, as well as in plasmacytoid dendritic cells (pDCs) and CD141+ DCs from rhesus macaques, compared to the induction of apoptosis in MVA-infected cells. MVA-B13R expressing simian immunodeficiency virus (SIV) Gag and Pol and HIV envelope (SHIV) (MVA-B13R/SHIV) produced higher levels of envelope in the supernatants than MVA/SHIV-infected DF-1 cells in vitro Immunization of BALB/c mice showed induction of higher levels of envelope-specific antibody-secreting cells and memory B cells, higher IgG antibody titers, and better persistence of antibody titers with MVA-B13R/SHIV than with MVA/SHIV. Gene set enrichment analysis of draining lymph node cells from day 1 after immunization showed negative enrichment for interferon responses in MVA-B13R/SHIV-immunized mice compared to the responses in MVA/SHIV-immunized mice. Taken together, these results demonstrate that restoring B13R functionality in MVA significantly delays MVA-induced apoptosis in muscle and antigen-presenting cells in vitro and augments vaccine-induced humoral immunity in mice.IMPORTANCE MVA is an attractive viral vector for vaccine development due to its safety and immunogenicity in multiple species and humans even under conditions of immunodeficiency. Here, to further improve the immunogenicity of MVA, we developed a novel vector, MVA-B13R, by replacing the fragmented anti-apoptotic genes 181R/182R with a functional version derived from vaccinia virus, B13R Our results show that MVA-B13R significantly delays apoptosis in antigen-presenting cells and muscle cells in vitro and augments vaccine-induced humoral immunity in mice, leading to the development of a novel vector for vaccine development against infectious diseases and cancer.


Asunto(s)
Apoptosis/genética , Productos del Gen gag/genética , Productos del Gen pol/genética , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Animales , Línea Celular Tumoral , Células Dendríticas/inmunología , Femenino , Células HeLa , Humanos , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Proteínas Virales/genética , Vacunas Virales/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
12.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31341049

RESUMEN

The RV144 human immunodeficiency virus type 1 (HIV-1) vaccine trial showed a strong association between anti-gp70 V1V2 scaffold (V1V2) and anti-V2 hot spot peptide (V2 HS) antibody responses and reduced risk of HIV infection. Accordingly, a primary goal for HIV vaccines is to enhance the magnitude and breadth of V1V2 and V2 HS antibody responses in addition to neutralizing antibodies. Here, we tested the immunogenicity and efficacy of HIV-1 C.1086 gp140 boosts administered sequentially after priming with CD40L-adjuvanted DNA/simian-human immunodeficiency virus (SHIV) and boosting with modified vaccinia virus Ankara (MVA)-SHIV vaccines in rhesus macaques. The DNA/MVA vaccination induced robust vaccine-specific CD4 and CD8 T cell responses with a polyfunctional profile. Two gp140 booster immunizations induced very high levels (∼2 mg/ml) of gp140 binding antibodies in serum, with strong reactivity directed against the homologous (C.1086) V1V2, V2 HS, V3, and gp41 immunodominant (ID) proteins. However, the vaccine-induced antibody showed 10-fold (peak) and 32-fold (prechallenge) weaker binding to the challenge virus (SHIV1157ipd3N4) V1V2 and failed to bind to the challenge virus V2 HS due to a single amino acid change. Point mutations in the immunogen V2 HS to match the V2 HS in the challenge virus significantly diminished the binding of vaccine-elicited antibodies to membrane-anchored gp160. Both vaccines failed to protect from infection following repeated SHIV1157ipd3N4 intrarectal challenges. However, only the protein-boosted animals showed enhanced viral control. These results demonstrate that C.1086 gp140 protein immunizations administered following DNA/MVA vaccination do not significantly boost heterologous V1V2 and V2 HS responses and fail to enhance protection against heterologous SHIV challenge.IMPORTANCE HIV, the virus that causes AIDS, is responsible for millions of infections and deaths annually. Despite intense research for the past 25 years, there remains no safe and effective vaccine available. The significance of this work is in identifying the pros and cons of adding a protein boost to an already well-established DNA/MVA HIV vaccine that is currently being tested in the clinic. Characterizing the effects of the protein boost can allow researchers going forward to design vaccines that generate responses that will be more effective against HIV. Our results in rhesus macaques show that boosting with a specific HIV envelope protein does not significantly boost antibody responses that were identified as immune correlates of protection in a moderately successful RV144 HIV vaccine trial in humans and highlight the need for the development of improved HIV envelope immunogens.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Neutralizantes/inmunología , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Reacciones Cruzadas/inmunología , ADN Viral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Infecciones por VIH/inmunología , Humanos , Inmunización Secundaria , Monocitos/inmunología , Monocitos/metabolismo , Virus de la Inmunodeficiencia de los Simios/clasificación , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunación , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Carga Viral
13.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651354

RESUMEN

The goals of preclinical HIV vaccine studies in nonhuman primates are to develop and test different approaches for their ability to generate protective immunity. Here, we compared the impact of 7 different vaccine modalities, all expressing the HIV-1 1086.C clade C envelope (Env), on (i) the magnitude and durability of antigen-specific serum antibody responses and (ii) autologous and heterologous neutralizing antibody capacity. These vaccination regimens included immunization with different combinations of DNA, modified vaccinia virus Ankara (MVA), soluble gp140 protein, and different adjuvants. Serum samples collected from 130 immunized monkeys at two key time points were analyzed using the TZM-bl cell assay: at 2 weeks after the final immunization (week 40/41) and on the day of challenge (week 58). Key initial findings were that inclusion of a gp140 protein boost had a significant impact on the magnitude and durability of Env-specific IgG antibodies, and addition of 3M-052 adjuvant was associated with better neutralizing activity against the SHIV1157ipd3N4 challenge virus and a heterologous HIV-1 CRF01 Env, CNE8. We measured neutralization against a panel of 12 tier 2 Envs using a newly described computational tool to quantify serum neutralization potency by factoring in the predetermined neutralization tier of each reference Env. This analysis revealed modest neutralization breadth, with DNA/MVA immunization followed by gp140 protein boosts in 3M-052 adjuvant producing the best scores. This study highlights that protein-containing regimens provide a solid foundation for the further development of novel adjuvants and inclusion of trimeric Env immunogens that could eventually elicit a higher level of neutralizing antibody breadth.IMPORTANCE Despite much progress, we still do not have a clear understanding of how to elicit a protective neutralizing antibody response against HIV-1 through vaccination. There have been great strides in the development of envelope immunogens that mimic the virus particle, but less is known about how different vaccination modalities and adjuvants contribute to shaping the antibody response. We compared seven different vaccines that were administered to rhesus macaques and that delivered the same envelope protein through various modalities and with different adjuvants. The results demonstrate that some vaccine components are better than others at eliciting neutralizing antibodies with breadth.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Línea Celular , Células HEK293 , Humanos , Inmunización Secundaria/métodos , Inmunoglobulina G/inmunología , Macaca mulatta , Primates , Vacunación/métodos , Virus Vaccinia/inmunología
14.
Proc Natl Acad Sci U S A ; 114(8): 1976-1981, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28159893

RESUMEN

A significant challenge to HIV eradication is the elimination of viral reservoirs in germinal center (GC) T follicular helper (Tfh) cells. However, GCs are considered to be immune privileged for antiviral CD8 T cells. Here, we show a population of simian immunodeficiency virus (SIV)-specific CD8 T cells express CXCR5 (C-X-C chemokine receptor type 5, a chemokine receptor required for homing to GCs) and expand in lymph nodes (LNs) following pathogenic SIV infection in a cohort of vaccinated macaques. This expansion was greater in animals that exhibited superior control of SIV. The CXCR5+ SIV-specific CD8 T cells demonstrated enhanced polyfunctionality, restricted expansion of antigen-pulsed Tfh cells in vitro, and possessed a unique gene expression pattern related to Tfh and Th2 cells. The increase in CXCR5+ CD8 T cells was associated with the presence of higher frequencies of SIV-specific CD8 T cells in the GC. Following TCR-driven stimulation in vitro, CXCR5+ but not CXCR5- CD8 T cells generated both CXCR5+ as well as CXCR5- cells. However, the addition of TGF-ß to CXCR5- CD8 T cells induced a population of CXCR5+ CD8 T cells, suggesting that this cytokine may be important in modulating these CXCR5+ CD8 T cells in vivo. Thus, CXCR5+ CD8 T cells represent a unique subset of antiviral CD8 T cells that expand in LNs during chronic SIV infection and may play a significant role in the control of pathogenic SIV infection.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Centro Germinal/citología , Receptores CXCR5/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Enfermedad Crónica , Macaca mulatta , Masculino
15.
J Virol ; 92(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29491157

RESUMEN

A major obstacle to development of an effective AIDS vaccine is that along with the intended beneficial responses, the immunization regimen may activate CD4+ T cells that can facilitate acquisition of human immunodeficiency virus (HIV) by serving as target cells for the virus. Lu et al. (W. Lu et al., Cell Rep 2:1736-1746, 2012, https://doi.org/10.1016/j.celrep.2012.11.016) reported that intragastric administration of chemically inactivated simian immunodeficiency virus SIVmac239 and Lactobacillus plantarum (iSIV-L. plantarum) protected 15/16 Chinese-origin rhesus macaques (RMs) from high-dose intrarectal SIVmac239 challenge at 3 months postimmunization. They attributed the observed protection to induction of immune tolerance, mediated by "MHC-Ib/E-restricted CD8+ regulatory T cells that suppressed SIV-harboring CD4+ T cell activation and ex vivo SIV replication in 15/16 animals without inducing SIV-specific antibodies or cytotoxic T." J.-M. Andrieu et al. (Front Immunol 5:297, 2014, https://doi.org/10.3389/fimmu.2014.00297) subsequently reported protection from infection in 23/24 RMs immunized intragastrically or intravaginally with iSIV and Mycobacterium bovis BCG, L. plantarum, or Lactobacillus rhamnosus, which they ascribed to the same tolerogenic mechanism. Using vaccine materials obtained from our coauthors, we conducted an immunization and challenge experiment with 54 Indian RMs and included control groups receiving iSIV only or L. plantarum only as well as unvaccinated animals. Intrarectal challenge with SIVmac239 resulted in rapid infection in all groups of vaccinated RMs as well as unvaccinated controls. iSIV-L. plantarum-vaccinated animals that became SIV infected showed viral loads similar to those observed in animals receiving iSIV only or L. plantarum only or in unvaccinated controls. The protection from SIV transmission conferred by intragastric iSIV-L. plantarum administration reported previously for Chinese-origin RMs was not observed when the same experiment was conducted in a larger cohort of Indian-origin animals.IMPORTANCE Despite an increased understanding of immune responses against HIV, a safe and effective AIDS vaccine is not yet available. One obstacle is that immunization may activate CD4+ T cells that may act as target cells for acquisition of HIV. An alternative strategy may involve induction of a tolerance-inducing response that limits the availability of activated CD4+ T cells, thus limiting the ability of virus to establish infection. In this regard, exciting results were obtained for Chinese-origin rhesus macaques by using a "tolerogenic" vaccine, consisting of intragastric administration of Lactobacillus plantarum and 2,2'-dithiodipyridine-inactivated SIV, which showed highly significant protection from virus transmission. In the present study, we administered iSIV-L. plantarum to Indian-origin rhesus macaques and failed to observe any protective effect on virus acquisition in this experimental setting. This work is important because it contributes to the overall assessment of the clinical potential of a new candidate AIDS vaccine platform based on iSIV-L. plantarum.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Disulfuros/farmacología , Lactobacillus plantarum/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Virus de la Inmunodeficiencia de los Simios/fisiología , 2,2'-Dipiridil/farmacología , Animales , Tolerancia Inmunológica , Lactobacillus plantarum/inmunología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Vacunas de Productos Inactivados , Replicación Viral/efectos de los fármacos
16.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237847

RESUMEN

Trimeric HIV-1 envelope (Env) immunogens are attractive due to their ability to display quaternary epitopes targeted by broadly neutralizing antibodies (bNAbs) while obscuring unfavorable epitopes. Results from the RV144 trial highlighted the importance of vaccine-induced HIV-1 Env V1V2-directed antibodies, with key regions of the V2 loop as targets for vaccine-mediated protection. We recently reported that a trimeric JRFL-gp120 immunogen, generated by inserting an N-terminal trimerization domain in the V1 loop region of a cyclically permuted gp120 (cycP-gp120), induces neutralizing activity against multiple tier-2 HIV-1 isolates in guinea pigs in a DNA prime/protein boost approach. Here, we tested the immunogenicity of cycP-gp120 in a protein prime/boost approach in rabbits and as a booster immunization to DNA/modified vaccinia Ankara (MVA)-vaccinated rabbits and rhesus macaques. In rabbits, two cycP-gp120 protein immunizations induced 100-fold higher titers of high-avidity gp120-specific IgG than two gp120 immunizations, with four total gp120 immunizations being required to induce comparable titers. cycP-gp120 also induced markedly enhanced neutralizing activity against tier-1A and -1B HIV-1 isolates, substantially higher binding and breadth to gp70-V1V2 scaffolds derived from a multiclade panel of global HIV-1 isolates, and antibodies targeting key regions of the V2-loop region associated with reduced risk of infection in RV144. Similarly, boosting MVA- or DNA/MVA-primed rabbits or rhesus macaques with cycP-gp120 showed a robust expansion of gp70-V1V2-specific IgG, neutralization breadth to tier-1B HIV-1 isolates, and antibody-dependent cellular cytotoxicity activity. These results demonstrate that cycP-gp120 serves as a robust HIV Env immunogen that induces broad anti-V1V2 antibodies and promotes neutralization breadth against HIV-1.IMPORTANCE Recent focus in HIV-1 vaccine development has been the design of trimeric HIV-1 Env immunogens that closely resemble native HIV-1 Env, with a major goal being the induction of bNAbs. While the generation of bNAbs is considered a gold standard in vaccine-induced antibody responses, results from the RV144 trial showed that nonneutralizing antibodies directed toward the V1V2 loop of HIV-1 gp120, specifically the V2 loop region, were associated with decreased risk of infection, demonstrating the need for the development of Env immunogens that induce a broad anti-V1V2 antibody response. In this study, we show that a novel trimeric gp120 protein, cycP-gp120, generates high titers of high-avidity and broadly cross-reactive anti-V1V2 antibodies, a result not found in animals immunized with monomeric gp120. These results reveal the potential of cycP-gp120 as a vaccine candidate to induce antibodies associated with reduced risk of HIV-1 infection in humans.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Inmunización/métodos , Vacunas contra el SIDA/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Reacciones Cruzadas/inmunología , Diseño de Fármacos , Epítopos/química , Epítopos/inmunología , Cobayas , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , Humanos , Inmunización Secundaria , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Macaca mulatta , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
17.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27928002

RESUMEN

Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). IMPORTANCE: The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed.


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Antivirales/inmunología , Nanopartículas , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Proteínas Portadoras/metabolismo , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Esquemas de Inmunización , Inmunoglobulina G/inmunología , Ligandos , Recuento de Linfocitos , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/mortalidad , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Receptor Toll-Like 4/metabolismo , Proteínas del Envoltorio Viral/inmunología
18.
J Med Primatol ; 47(5): 288-297, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30204253

RESUMEN

BACKGROUND: A pediatric vaccine to prevent breast milk transmission of human immunodeficiency virus (HIV) may generate greater immune responses at viral entry sites if given by an oral route. METHODS: We compared immune responses induced in juvenile macaques by prime/boosting with simian immunodeficiency virus (SIV)-expressing DNA/modified vaccinia Ankara virus (MVA) by the intramuscular route (IM), the oral (O)/tonsillar routes (T), the O/sublingual (SL) routes, and O+IM/SL routes. RESULTS: O/T or O/SL immunization generated SIV-specific T cells in mucosal tissues but failed to induce SIV-specific IgA in saliva or stool or IgG in plasma. IM/IM or O+IM/SL generated humoral and cellular responses to SIV. IM/IM generated greater frequencies of TFH in spleen, but O+IM/SL animals had higher avidity plasma IgG and more often demonstrated mucosal IgA responses. CONCLUSION: These results suggest that codelivery of HIV DNA/MVA vaccines by the oral and IM routes might be optimal for generating both systemic and mucosal antibodies.


Asunto(s)
Inmunidad Celular/inmunología , Inmunidad Mucosa/inmunología , Inmunogenicidad Vacunal/inmunología , Macaca mulatta , Enfermedades de los Monos/inmunología , Vacunas contra el SIDAS/efectos adversos , Virus de la Inmunodeficiencia de los Simios/inmunología , Administración Oral , Administración Sublingual , Animales , ADN Viral/efectos adversos , Inyecciones Intramusculares/efectos adversos , Prueba de Estudio Conceptual , Vaccinia/inmunología
19.
J Immunol ; 197(5): 1832-42, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27481845

RESUMEN

Chronic HIV infection is associated with accumulation of germinal center (GC) T follicular helper (Tfh) cells in the lymphoid tissue. The GC Tfh cells can be heterogeneous based on the expression of chemokine receptors associated with T helper lineages, such as CXCR3 (Th1), CCR4 (Th2), and CCR6 (Th17). However, the heterogeneous nature of GC Tfh cells in the lymphoid tissue and its association with viral persistence and Ab production during chronic SIV/HIV infection are not known. To address this, we characterized the expression of CXCR3, CCR4, and CCR6 on GC Tfh cells in lymph nodes following SIVmac251 infection in rhesus macaques. In SIV-naive rhesus macaques, only a small fraction of GC Tfh cells expressed CXCR3, CCR4, and CCR6. However, during chronic SIV infection, the majority of GC Tfh cells expressed CXCR3, whereas the proportion of CCR4(+) cells did not change, and CCR6(+) cells decreased. CXCR3(+), but not CXCR3(-), GC Tfh cells produced IFN-γ (Th1 cytokine) and IL-21 (Tfh cytokine), whereas both subsets expressed CD40L following stimulation. Immunohistochemistry analysis demonstrated an accumulation of CD4(+)IFN-γ(+) T cells within the hyperplastic follicles during chronic SIV infection. CXCR3(+) GC Tfh cells also expressed higher levels of ICOS, CCR5, and α4ß7 and contained more copies of SIV DNA compared with CXCR3(-) GC Tfh cells. However, CXCR3(+) and CXCR3(-) GC Tfh cells delivered help to B cells in vitro for production of IgG. These data demonstrate that chronic SIV infection promotes expansion of Th1-biased GC Tfh cells, which are phenotypically and functionally distinct from conventional GC Tfh cells and contribute to hypergammaglobulinemia and viral reservoirs.


Asunto(s)
Centro Germinal/citología , Centro Germinal/fisiología , Tejido Linfoide/citología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Células TH1/inmunología , Animales , Linfocitos B/inmunología , Ligando de CD40/genética , Ligando de CD40/inmunología , Femenino , Centro Germinal/inmunología , Hipergammaglobulinemia , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucinas/biosíntesis , Interleucinas/inmunología , Tejido Linfoide/inmunología , Macaca mulatta , Receptores CCR4/inmunología , Receptores CCR6/inmunología , Receptores CXCR3/inmunología , Receptores CXCR5/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología
20.
J Immunol ; 197(9): 3586-3596, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27683750

RESUMEN

We tested, in rhesus macaques, the effects of a 500-fold range of an admixed recombinant modified vaccinia Ankara (MVA) expressing rhesus GM-CSF (MVA/GM-CSF) on the immunogenicity and protection elicited by an MVA/SIV macaque 239 vaccine. High doses of MVA/GM-CSF did not affect the levels of systemic envelope (Env)-specific Ab, but it did decrease the expression of the gut-homing receptor α4ß7 on plasmacytoid dendritic cells (p < 0.01) and the magnitudes of Env-specific IgA (p = 0.01) and IgG (p < 0.05) in rectal secretions. The protective effect of the vaccine was evaluated using 12 weekly rectal challenges in rhesus macaques subgrouped by tripartite motif-containing protein 5α (TRIM5α) genotypes that are restrictive or permissive for infection by the challenge virus SIVsmE660. Eight of nine TRIM5α-restrictive animals receiving no or the lowest dose (1 × 105 PFU) of MVA/GM-CSF resisted all 12 challenges. In the comparable TRIM5α-permissive group, only 1 of 12 animals resisted all 12 challenges. In the TRIM5α-restrictive animals, but not in the TRIM5α-permissive animals, the number of challenges to infection directly correlated with the magnitudes of Env-specific rectal IgG (r = +0.6) and IgA (r = +0.6), the avidity of Env-specific serum IgG (r = +0.5), and Ab dependent cell-mediated virus inhibition (r = +0.6). Titers of neutralizing Ab did not correlate with protection. We conclude that 1) protection elicited by MVA/SIVmac239 is strongly dependent on the presence of TRIM5α restriction, 2) nonneutralizing Ab responses contribute to protection against SIVsmE660 in TRIM5α-restrictive animals, and 3) high doses of codelivered MVA/GM-CSF inhibit mucosal Ab responses and the protection elicited by MVA expressing noninfectious SIV macaque 239 virus-like particles.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Recto/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Genotipo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Inmunoglobulina G/metabolismo , Macaca mulatta , Proteínas/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Ubiquitina-Proteína Ligasas , Vacunas de ADN , Vaccinia/inmunología , Proteínas del Envoltorio Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA