Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958591

RESUMEN

The metastatic risk of uveal melanoma (UM) is defined by a limited number of molecular lesions, somatic mutations (SF3B1 and BAP1), and copy number alterations (CNA): monosomy of chromosome 3 (M3), chr8q gain (8q), chr6p gain (6p), yet the sequence of events is not clear. We analyzed data from three datasets (TCGA-UVM, GSE27831, GSE51880) with information regarding M3, 8q, 6p, SF3B1, and BAP1 status. We confirm that BAP1 mutations are always associated with M3 in high-risk patients. All other features (6p, 8q, M3, SF3B1 mutation) were present independently from each other. Chr8q gain was frequently associated with chr3 disomy. Hierarchical clustering of gene expression data of samples with different binary combinations of aggressivity factors shows that patients with 8q|M3, BAP1|M3 form one cluster enriched in samples that developed metastases. Patients with 6p combined with either 8q or SF3B1 are mainly represented in the other, low-risk cluster. Several gene expression events that show a non-significant association with outcome when considering single features become significant when analyzing combinations of risk features indicating additive action. The independence of risk factors is consistent with a random risk model of UM metastasis without an obligatory sequence.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Proteínas Supresoras de Tumor/genética , Neoplasias de la Úvea/patología , Melanoma/metabolismo , Mutación , Ubiquitina Tiolesterasa/genética
2.
Haematologica ; 105(5): 1317-1328, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31467126

RESUMEN

Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Humanos , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Transducción de Señal , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell Commun Signal ; 15(1): 51, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29216878

RESUMEN

BACKGROUND: Prostate cancer (PCa), the second most common cancer affecting men worldwide, shows a broad spectrum of biological and clinical behaviour representing the epiphenomenon of an extreme heterogeneity. Androgen deprivation therapy is the mainstay of treatment for advanced forms but after few years the majority of patients progress to castration-resistant prostate cancer (CRPC), a lethal form that poses considerable therapeutic challenges. METHODS: Western blotting, immunocytochemistry, invasion and reporter assays, and in vivo studies were performed to characterize androgen resistant sublines phenotype in comparison to the parental cell line LNCaP. RNA microarray, mass spectrometry, integrative transcriptomic and proteomic differential analysis coupled with GeneOntology and multivariate analyses were applied to identify deregulated genes and proteins involved in CRPC evolution. RESULTS: Treating the androgen-responsive LNCaP cell line for over a year with 10 µM bicalutamide both in the presence and absence of 0.1 nM 5-α-dihydrotestosterone (DHT) we obtained two cell sublines, designated PDB and MDB respectively, presenting several analogies with CRPC. Molecular and functional analyses of PDB and MDB, compared to the parental cell line, showed that both resistant cell lines were PSA low/negative with comparable levels of nuclear androgen receptor devoid of activity due to altered phosphorylation; cell growth and survival were dependent on AKT and p38MAPK activation and PARP-1 overexpression; their malignant phenotype increased both in vitro and in vivo. Performing bioinformatic analyses we highlighted biological processes related to environmental and stress adaptation supporting cell survival and growth. We identified 15 proteins that could direct androgen-resistance acquisition. Eleven out of these 15 proteins were closely related to biological processes involved in PCa progression. CONCLUSIONS: Our models suggest that environmental factors and epigenetic modulation can activate processes of phenotypic adaptation driving drug-resistance. The identified key proteins of these adaptive phenotypes could be eligible targets for innovative therapies as well as molecules of prognostic and predictive value.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Andrógenos/metabolismo , Resistencia a Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/fisiopatología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
4.
Clin Exp Rheumatol ; 34(6 Suppl 102): S121-S128, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27310036

RESUMEN

OBJECTIVES: Tumour necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is a multisystemic autoinflammatory condition associated with heterozygous TNFRSF1A mutations, presenting with a variety of clinical symptoms, many of which yet unexplained. In this work, we aimed at deepening into TRAPS pathogenic mechanisms sustained by monocytes. METHODS: Microarray experiments were conducted to identify genes whose expression results altered in patients compared to healthy individuals, both under basal condition and following LPS stimulation. RESULTS: An inflammatory state baseline, characterised by constitutive overexpression of IL1ß and IL1R1 receptor, has been shown in TRAPS patients compared to controls, including in non-active disease phases. Following LPS stimulation, IL1RN up-regulation is stronger in controls than in patients and inflammatory pathways and microRNAs undergo differential regulation. Genes involved in post-translational modifications, protein folding and ubiquitination result constitutively up-regulated in TRAPS, while response to interferon types I and II is defective, failing to be up-regulated by LPS. TGFß pathway is down-regulated in untreated TRAPS monocytes, while genes involved in redox regulation result constitutively over-expressed. Finally, additional molecular alterations seem to reflect organ failures sometime complicating the disease. CONCLUSIONS: Gene expression profile in resting TRAPS monocytes has confirmed the patients' chronic inflammatory condition. In addition, pathways not yet associated with the disease have been disclosed, such as interferon types I and II response to LPS stimulation and a downregulation of the TGFß pathway in basal condition. The role of miRNA, suggested by our results, deserves in-depth analyses in light of the possible development of targeted therapies.


Asunto(s)
Fiebre/genética , Regulación de la Expresión Génica , Enfermedades Autoinflamatorias Hereditarias/genética , Mediadores de Inflamación/metabolismo , Monocitos/metabolismo , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Fiebre/diagnóstico , Fiebre/inmunología , Fiebre/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Estudios de Asociación Genética , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Enfermedades Autoinflamatorias Hereditarias/diagnóstico , Enfermedades Autoinflamatorias Hereditarias/inmunología , Enfermedades Autoinflamatorias Hereditarias/metabolismo , Heterocigoto , Humanos , Mediadores de Inflamación/inmunología , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Lipopolisacáridos/farmacología , Masculino , Monocitos/efectos de los fármacos , Monocitos/inmunología , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reacción en Cadena de la Polimerasa , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Reproducibilidad de los Resultados
5.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36765842

RESUMEN

BACKGROUND: Metastatic uveal melanoma (MUM) is a highly aggressive, therapy-resistant disease. Driver mutations in Gα-proteins GNAQ and GNA11 activate MAP-kinase and YAP/TAZ pathways of oncogenic signalling. MAP-kinase and MEK-inhibitors do not significantly block MUM progression, likely due to persisting YAP/TAZ signalling. Statins inhibit YAP/TAZ activation by blocking the mevalonate pathway, geranyl-geranylation, and subcellular localisation of the Rho-GTPase. We investigated drugs that affect the YAP/TAZ pathway, valproic acid, verteporfin and statins, in combination with MEK-inhibitor trametinib. METHODS: We established IC50 values of the individual drugs and monitored the effects of their combinations in terms of proliferation. We selected trametinib and cerivastatin for evaluation of cell cycle and apoptosis. Synergism was detected using isobologram and Chou-Talalay analyses. The most synergistic combination was tested in vivo. RESULTS: Synergistic concentrations of trametinib and cerivastatin induced a massive arrest of proliferation and cell cycle and enhanced apoptosis, particularly in the monosomic, BAP1-mutated UPMM3 cell line. The combined treatment reduced ERK and AKT phosphorylation, increased the inactive, cytoplasmatic form of YAP and significantly impaired the growth of UM cells with monosomy of chromosome 3 in NSG mice. CONCLUSION: Statins can potentiate the efficacy of MEK inhibitors in the therapy of UM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA