Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ageing Res Rev ; 97: 102298, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38604453

RESUMEN

Alzheimer's disease (AD) presents a complex pathology involving amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, and cholinergic deficits. Oxidative stress exacerbates AD progression through pathways like macromolecular peroxidation, mitochondrial dysfunction, and metal ion redox potential alteration linked to amyloid-beta (Aß). Despite limited approved medications, heterocyclic compounds have emerged as promising candidates in AD drug discovery. This review highlights recent advancements in synthetic heterocyclic compounds targeting oxidative stress, mitochondrial dysfunction, and neuroinflammation in AD. Additionally, it explores the potential of nanomaterial-based drug delivery systems to overcome challenges in AD treatment. Nanoparticles with heterocyclic scaffolds, like polysorbate 80-coated PLGA and Resveratrol-loaded nano-selenium, show improved brain transport and efficacy. Micellar CAPE and Melatonin-loaded nano-capsules exhibit enhanced antioxidant properties, while a tetra hydroacridine derivative (CHDA) combined with nano-radiogold particles demonstrates promising acetylcholinesterase inhibition without toxicity. This comprehensive review underscores the potential of nanotechnology-driven drug delivery for optimizing the therapeutic outcomes of novel synthetic heterocyclic compounds in AD management. Furthermore, the inclusion of various promising heterocyclic compounds with detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) data provides valuable insights for planning the development of novel drug delivery treatments for AD.


Asunto(s)
Enfermedad de Alzheimer , Sistemas de Liberación de Medicamentos , Estrés Oxidativo , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Animales , Nanoestructuras/administración & dosificación , Compuestos Heterocíclicos/administración & dosificación , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Nanopartículas/administración & dosificación
2.
Curr Top Med Chem ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38288804

RESUMEN

Cancer stem cells (CSCs) have become a key player in the growth of tumors, the spread of cancer, and the resistance to therapeutic interventions. Targeting these elusive cell populations has the potential to fundamentally alter cancer treatment plans. CSCs, also known as tumor-initiating cells (TICs), are thought to play a role in both medication resistance and cancer recurrence. This is explained by their capacity to regenerate themselves and change into different kinds of cancer cells. Due to their higher expression of ATP-binding cassette (ABC) membrane transporters, enhanced epithelial to mesenchymal (EMT) characteristics, improved immune evasion, activation of survival signaling pathways, and improved DNA repair mechanisms, CSCs exhibit extraordinary resistance to therapies. This comprehensive analysis delves into advancements in the domain of Targeted Cancer Stem Cell Therapeutics, concentrating on unraveling the distinctive traits of CSCs and the therapeutic methods devised to eliminate them.

3.
Curr Top Med Chem ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37855293

RESUMEN

Alzheimer's disease (AD) has been recognized as the most important cause of dementia, which is estimated to contribute more than 2 trillion USD in medical costs. AD patients encounter progressive neurodegenerative dementia associated with behavioural, linguistic, and visuospatial deficits. Although studies on the discovery of amyloid ß (Aß) and tau (the essential elements of plaques and tangles in AD) have shed light on the molecular pathological processes of AD, the exact cause of the condition is still largely unknown. The involvement of various proteins, such as amyloid-ß, prion protein, tau, and α-synuclein has been linked to AD pathogenesis. The current AD treatments are mainly based on symptomatic management and restoration of neurotransmitters' balance. There is a significant need to develop medications that can alter the underlying disease process and prevent its progression. The present manuscript provides a review of various hypotheses that have been proposed for AD pathogenesis. The manuscript has also explored the development of novel anti-AD drugs based on various pathogenic pathways, which are recently under various clinical trial phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA