Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Appl Biomater Biomech ; 9(2): 109-17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22065388

RESUMEN

Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.


Asunto(s)
Ingeniería Biomédica/métodos , Ingeniería Biomédica/tendencias , Sistemas de Manutención de la Vida/instrumentación , Modelos Cardiovasculares , Adolescente , Procedimientos Quirúrgicos Cardíacos/instrumentación , Procedimientos Quirúrgicos Cardíacos/métodos , Procedimientos Quirúrgicos Cardíacos/tendencias , Niño , Preescolar , Humanos , Imagenología Tridimensional/métodos , Imagenología Tridimensional/tendencias , Lactante , Programas Informáticos/tendencias
2.
Math Biosci Eng ; 16(4): 2795-2810, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31137238

RESUMEN

This work investigates the mechano-biological features of cells cultured in monolayers in response to different osmotic conditions. In-vitro experiments have been performed to quantify the long-term effects of prolonged osmotic stresses on the morphology and proliferation capacity of glioblastoma cells. The experimental results highlight that both hypotonic and hypertonic conditions affect the proliferative rate of glioblastoma cells on different cell cycle phases. Moreover, glioblastoma cells in hypertonic conditions display a flattened and elongated shape. The latter effect is explained using a nonlinear elastic model for the single cell. Due to a crossover between the free energy contributions related to the cytosol and the cytoskeletal fibers, a critical osmotic stress determines a morphological transition from a uniformly compressed to an elongated shape.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Glioblastoma/fisiopatología , Presión Osmótica , Astrocitos/metabolismo , División Celular , Línea Celular Tumoral , Proliferación Celular , Simulación por Computador , Citoesqueleto/metabolismo , Dextranos/química , Elasticidad , Humanos , Microscopía , Modelos Biológicos , Ósmosis , Presión , Esferoides Celulares/citología , Estrés Fisiológico , Resultado del Tratamiento
3.
J R Soc Interface ; 16(157): 20190233, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31431183

RESUMEN

One of the most remarkable differences between classical engineering materials and living matter is the ability of the latter to grow and remodel in response to diverse stimuli. The mechanical behaviour of living matter is governed not only by an elastic or viscoelastic response to loading on short time scales up to several minutes, but also by often crucial growth and remodelling responses on time scales from hours to months. Phenomena of growth and remodelling play important roles, for example during morphogenesis in early life as well as in homeostasis and pathogenesis in adult tissues, which often adapt to changes in their chemo-mechanical environment as a result of ageing, diseases, injury or surgical intervention. Mechano-regulated growth and remodelling are observed in various soft tissues, ranging from tendons and arteries to the eye and brain, but also in bone, lower organisms and plants. Understanding and predicting growth and remodelling of living systems is one of the most important challenges in biomechanics and mechanobiology. This article reviews the current state of growth and remodelling as it applies primarily to soft tissues, and provides a perspective on critical challenges and future directions.


Asunto(s)
Modelos Biológicos , Estrés Mecánico , Animales , Fenómenos Biomecánicos , Humanos , Morfogénesis
4.
Cytoskeleton (Hoboken) ; 70(4): 201-14, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23444002

RESUMEN

The migration of tumor cells of different degrees of invasivity is studied, on the basis of the traction forces exerted in time on soft substrates (Young modulus∼10 kPa). It is found that the outliers of the traction stresses can be an effective indicator to distinguish cancer cell lines of different invasiveness. Here, we test two different epithelial bladder cancer cell lines, one invasive (T24), and a less invasive one (RT112). Invasive cancer cells move in a nearly periodic motion, with peaks in velocity corresponding to higher traction forces exerted on the substrate, whereas less invasive cells develop traction stresses almost constant in time. The dynamics of focal adhesions (FAs) as well as cytoskeleton features reveals that different mechanisms are activated to migrate: T24 cells show an interconnected cytoskeleton linked to mature adhesion sites, leading to small traction stresses, whereas less invasive cells (RT112) show a less-structured cytoskeleton and unmature adhesions corresponding to higher traction stresses. Migration velocities are smaller in the case of less invasive cells. The mean squared displacement shows super-diffusive motion in both cases with higher exponent for the more invasive cancer cells. Further correlations between traction forces and the actin cytoskeleton reveal an unexpected pattern of a large actin rim at the RT112 cell edge where higher forces are colocalized, whereas a more usual cytoskeleton structure with stress fibers and FAs are found for T24 cancer cells. We conjecture that this kind of analysis can be useful to classify cancer cell invasiveness.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Neoplasias/patología , Actinas/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Técnica del Anticuerpo Fluorescente , Adhesiones Focales/patología , Humanos , Miosinas/metabolismo , Invasividad Neoplásica , Neoplasias/metabolismo , Estrés Mecánico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
5.
J Cell Biol ; 188(2): 287-97, 2010 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-20100912

RESUMEN

During cell migration, forces generated by the actin cytoskeleton are transmitted through adhesion complexes to the substrate. To investigate the mechanism of force generation and transmission, we analyzed the relationship between actin network velocity and traction forces at the substrate in a model system of persistently migrating fish epidermal keratocytes. Front and lateral sides of the cell exhibited much stronger coupling between actin motion and traction forces than the trailing cell body. Further analysis of the traction-velocity relationship suggested that the force transmission mechanisms were different in different cell regions: at the front, traction was generated by a gripping of the actin network to the substrate, whereas at the sides and back, it was produced by the network's slipping over the substrate. Treatment with inhibitors of the actin-myosin system demonstrated that the cell body translocation could be powered by either of the two different processes, actomyosin contraction or actin assembly, with the former associated with significantly larger traction forces than the latter.


Asunto(s)
Citoesqueleto de Actina/fisiología , Movimiento Celular/fisiología , Citoesqueleto/fisiología , Queratinocitos/fisiología , Estrés Mecánico , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/ultraestructura , Animales , Fenómenos Biomecánicos/fisiología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Movimiento Celular/efectos de los fármacos , Polaridad Celular/fisiología , Forma de la Célula/efectos de los fármacos , Forma de la Célula/fisiología , Células Cultivadas , Citocalasina D/farmacología , Citoesqueleto/ultraestructura , Peces , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Queratinocitos/ultraestructura , Modelos Biológicos , Miosinas/efectos de los fármacos , Miosinas/fisiología , Miosinas/ultraestructura , Inhibidores de la Síntesis de la Proteína/farmacología , Resistencia a la Tracción/fisiología
6.
Biomech Model Mechanobiol ; 8(5): 397-413, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19115069

RESUMEN

Tumour cells usually live in an environment formed by other host cells, extra-cellular matrix and extra-cellular liquid. Cells duplicate, reorganise and deform while binding each other due to adhesion molecules exerting forces of measurable strength. In this paper, a macroscopic mechanical model of solid tumour is investigated which takes such adhesion mechanisms into account. The extracellular matrix is treated as an elastic compressible material, while, in order to define the relationship between stress and strain for the cellular constituents, the deformation gradient is decomposed in a multiplicative way distinguishing the contribution due to growth, to cell rearrangement and to elastic deformation. On the basis of experimental results at a cellular level, it is proposed that at a macroscopic level there exists a yield condition separating the elastic and dissipative regimes. Previously proposed models are obtained as limit cases, e.g. fluid-like models are obtained in the limit of fast cell reorganisation and negligible yield stress. A numerical test case shows that the model is able to account for several complex interactions: how tumour growth can be influenced by stress, how and where it can generate cell reorganisation to release the stress level, how it can lead to capsule formation and compression of the surrounding tissue.


Asunto(s)
Neoplasias/patología , Estrés Mecánico , Animales , Fenómenos Biomecánicos , Adhesión Celular , Proliferación Celular , Humanos , Modelos Biológicos , Factores de Tiempo
8.
EMBO J ; 22(8): 1771-9, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12682010

RESUMEN

In vertebrates, networks of capillary vessels supply tissues with nutrients. Capillary patterns are closely mimicked by endothelial cells cultured on basement membrane proteins that allow single randomly dispersed cells to self-organize into vascular networks. Here we provide a model including chemoattraction as the fundamental mechanism for cell-to-cell communication in order to identify key parameters in the complexity of the formation of vascular patterns. By flanking biological experiments, theoretical insights and numerical simulations, we provide strong evidence that endothelial cell number and the range of activity of a chemoattractant factor regulate vascular network formation and size. We propose a mechanism linking the scale of formed endothelial structures to the range of cell-to-cell interaction mediated by the release of chemoattractants.


Asunto(s)
Capilares/anatomía & histología , Capilares/fisiología , Movimiento Celular/fisiología , Endotelio Vascular/metabolismo , Neovascularización Fisiológica , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Células Cultivadas , Factores Quimiotácticos/metabolismo , Factores de Crecimiento Endotelial/metabolismo , Endotelio Vascular/citología , Humanos , Modelos Teóricos , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA