Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Plant Physiol ; 182(1): 378-392, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527088

RESUMEN

The life cycle of many organisms includes a quiescent stage, such as bacterial or fungal spores, insect larvae, or plant seeds. Common to these stages is their low water content and high survivability during harsh conditions. Upon rehydration, organisms need to reactivate metabolism and protein synthesis. Plant seeds contain many mRNAs that are transcribed during seed development. Translation of these mRNAs occurs during early seed germination, even before the requirement of transcription. Therefore, stored mRNAs are postulated to be important for germination. How these mRNAs are stored and protected during long-term storage is unknown. The aim of this study was to investigate how mRNAs are stored in dry seeds and whether they are indeed translated during seed germination. We investigated seed polysome profiles and the mRNAs and protein complexes that are associated with these ribosomes in seeds of the model organism Arabidopsis (Arabidopsis thaliana). We showed that most stored mRNAs are associated with monosomes in dry seeds; therefore, we focus on monosomes in this study. Seed ribosome complexes are associated with mRNA-binding proteins, stress granule, and P-body proteins, which suggests regulated packing of seed mRNAs. Interestingly, ∼17% of the mRNAs that are specifically associated with monosomes are translationally up-regulated during seed germination. These mRNAs are transcribed during seed maturation, suggesting a role for this developmental stage in determining the translational fate of mRNAs during early germination.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/fisiología , ARN Mensajero Almacenado/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/genética , Germinación/fisiología , ARN Mensajero/genética , ARN de Planta/genética , Semillas/fisiología
2.
Int Arch Allergy Immunol ; 178(1): 19-32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30368491

RESUMEN

BACKGROUND: Allergic sensitisation towards cashew nut often happens without a clear history of eating cashew nut. IgE cross-reactivity between cashew and pistachio nut is well described; however, the ability of cashew nut-specific IgE to cross-react to common tree nut species and other Anacardiaceae, like mango, pink peppercorn, or sumac is largely unknown. OBJECTIVES: Cashew nut allergic individuals may cross-react to foods that are phylogenetically related to cashew. We aimed to determine IgE cross-sensitisation and cross-reactivity profiles in cashew nut-sensitised subjects, towards botanically related proteins of other Anacardiaceae family members and related tree nut species. METHOD: Sera from children with a suspected cashew nut allergy (n = 56) were assessed for IgE sensitisation to common tree nuts, mango, pink peppercorn, and sumac using dot blot technique. Allergen cross-reactivity patterns between Anacardiaceae species were subsequently examined by SDS-PAGE and immunoblot inhibition, and IgE-reactive allergens were identified by LC-MS/MS. RESULTS: From the 56 subjects analysed, 36 were positive on dot blot for cashew nut (63%). Of these, 50% were mono-sensitised to cashew nuts, 19% were co-sensitised to Anacardiaceae species, and 31% were co-sensitised to tree nuts. Subjects co-sensitised to Anacardiaceae species displayed a different allergen recognition pattern than subjects sensitised to common tree nuts. In pink peppercorn, putative albumin- and legumin-type seed storage proteins were found to cross-react with serum of cashew nut-sensitised subjects in vitro. In addition, a putative luminal binding protein was identified, which, among others, may be involved in cross-reactivity between several Anacardiaceae species. CONCLUSIONS: Results demonstrate the in vitro presence of IgE cross-sensitisation in children towards multiple Anacardiaceae species. In this study, putative novel allergens were identified in cashew, pistachio, and pink peppercorn, which may pose factors that underlie the observed cross-sensitivity to these species. The clinical relevance of this widespread cross-sensitisation is unknown.


Asunto(s)
Alérgenos/inmunología , Reacciones Cruzadas/inmunología , Inmunoglobulina E/inmunología , Hipersensibilidad a la Nuez/inmunología , Nueces/efectos adversos , Adolescente , Especificidad de Anticuerpos/inmunología , Niño , Preescolar , Femenino , Humanos , Hipersensibilidad Inmediata/diagnóstico , Hipersensibilidad Inmediata/inmunología , Inmunización , Masculino , Hipersensibilidad a la Nuez/diagnóstico
3.
J Proteomics ; 128: 436-49, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26232565

RESUMEN

Arabidopsis thaliana cytosolic ribosomes are large complexes containing eighty-one distinct ribosomal proteins (r-proteins), four ribosomal RNAs (rRNA) and a plethora of associated (non-ribosomal) proteins. In plants, r-proteins of cytosolic ribosomes are each encoded by two to seven different expressed and similar genes, forming an r-protein family. Distinctions in the r-protein coding sequences of gene family members are a source of variation between ribosomes. We performed proteomic investigation of actively translating cytosolic ribosomes purified using both immunopurification and a classic sucrose cushion centrifugation-based protocol from plants of different developmental stages. Both 1D and 2D LC-MS(E) with data-independent acquisition as well as conventional data-dependent MS/MS procedures were applied. This approach provided detailed identification of 165 r-protein paralogs with high coverage based on proteotypic peptides. The detected r-proteins were the products of the majority (68%) of the 242 cytosolic r-protein genes encoded by the genome. A total of 70 distinct r-proteins were identified. Based on these results and information from DNA microarray and ribosome footprint profiling studies a re-annotation of Arabidopsis r-proteins and genes is proposed. This compendium of the cytosolic r-protein proteome will serve as a template for future investigations on the dynamic structure and function of plant ribosomes. BIOLOGICAL SIGNIFICANCE: Translation is one of the most energy demanding processes in a living cell and is therefore carefully regulated. Translational activity is tightly linked to growth control and growth regulating mechanism. Recently established translational profiling technologies, including the profiling of mRNAs associated with polysomes and the mapping of ribosome footprints on mRNAs, have revealed that the expression of gene expression is often fine-tuned by differential translation of gene transcripts. The eukaryotic ribosome, the hub of these important processes, consists of close to eighty different proteins (depending on species) and four large RNAs assembled into two highly conserved subunits. In plants and to lesser extent in yeast, the r-proteins are encoded by more than one actively transcribed gene. As r-protein gene paralogs frequently do not encode identical proteins and are regulated by growth conditions and development, in vivo ribosomes are heterogeneous in their protein content. The regulatory and physiological importance of this heterogeneity is unknown. Here, an improved annotation of the more than two hundred r-protein genes of Arabidopsis is presented that combines proteomic and advanced mRNA expression data. This proteomic investigation and re-annotation of Arabidopsis ribosomes establish a base for future investigations of translational control in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Perfilación de la Expresión Génica/métodos , Datos de Secuencia Molecular , Proteoma/química , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA