Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Toxicol ; 39(6): 3666-3678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506534

RESUMEN

Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transducción de Señal , Animales , Masculino , Ratas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Chenopodiaceae/química , Dietilnitrosamina/toxicidad , Proteína Forkhead Box O3/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
2.
Molecules ; 28(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836738

RESUMEN

Research targeting natural cosmeceuticals is now increasing due to the safety and/or limited side effects of natural products that are highly valued in cosmetology. Within a research program exploring botanical sources for valuable skincare antioxidant components, the current study investigated the phytochemical content and the biological potential of Faucaria tuberculosa. Phytochemical investigation of F. tuberculosa extract resulted in purification and characterization of six phytoconstituents, including a new one. The structure of the new constituent was elucidated as (-) catechin-(2→1',4→2')-phloroglucinol (4). The structural identity of all isolated compounds were confirmed on the basis of extensive physical and spectral (1D, 2D-NMR and HRESIMS) investigations. The ethanolic extract exhibits a rich content of total phenolics (TPC) and total flavonoids (TFC), estimated as 32 ± 0.034 mg GAE/g and 43 ± 0.004 mg RE/g, respectively. In addition, the antioxidant (ABTS and FRAP), antihyaluronidase and antityrosinase activities of all purified phytoconstituents were evaluated. The results noted (-) catechin-(2→1',4→2') phloroglucinol (4) and phloroglucinol (1) for their remarkable antioxidant activity, while isorhamnetin 3-O-rutinoside (3) and 3,5-dihydroxyphenyl ß-D-glucopyranoside (2) achieved the most potent inhibitory activity against tyrosinase (IC50 22.09 ± 0.7 µM and 29.96 ± 0.44 µM, respectively) and hyaluronidase enzymes (IC50 49.30 ± 1.57 µM and 62.58 ± 0.92, respectively) that remarkably exceeds the activity of the standard drugs kojic acid (IC50 = 65.21 ± 0.47 µM) and luteolin, (IC50 = 116.16 ± 1.69 µM), respectively. A molecular docking study of the two active compounds (3 and 2) highlighted their high potential to bind to the active sites of the two enzymes involved in the study.


Asunto(s)
Catequina , Extractos Vegetales , Extractos Vegetales/química , Antioxidantes/química , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Floroglucinol
3.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164238

RESUMEN

Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p < 0.05) in the body weight and serum insulin level, as well as a significant decrease in food and water intake, RBGL, FBGL, total cholesterol, and triglyceride levels, in STZ-induced diabetic mice, compared with the diabetic control group. Meanwhile, no significant differences of both extract doses were observed in normoglycemic mice when compared with normal control animals. This study revealed a promising antidiabetic activity of the wild plant A. alopecuroides.


Asunto(s)
Amaranthaceae/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Control Glucémico/métodos , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Glucemia/metabolismo , Colesterol/sangre , Diabetes Mellitus Experimental/sangre , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Estreptozocina , Triglicéridos/sangre
4.
Molecules ; 26(19)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34641548

RESUMEN

A small series of nitro group-bearing enamides was designed, synthesized (NEA1-NEA5), and evaluated for their inhibitory profiles of monoamine oxidases (MAOs) and ß-site amyloid precursor protein cleaving enzyme 1 (ß-secretase, BACE1). Compounds NEA3 and NEA1 exhibited a more potent MAO-B inhibition (IC50 value = 0.0092 and 0.016 µM, respectively) than the standards (IC50 value = 0.11 and 0.14 µM, respectively, for lazabemide and pargyline). Moreover, NEA3 and NEA1 showed greater selectivity index (SI) values toward MAO-B over MAO-A (SI of >1652.2 and >2500.0, respectively). The inhibition and kinetics studies suggested that NEA3 and NEA1 are reversible and competitive inhibitors with Ki values of 0.013 ± 0.005 and 0.0049 ± 0.0002 µM, respectively, for MAO-B. In addition, both NEA3 and NEA1 showed efficient BACE1 inhibitions with IC50 values of 8.02 ± 0.13 and 8.21 ± 0.03 µM better than the standard quercetin value (13.40 ± 0.04 µM). The parallel artificial membrane permeability assay (PAMPA) method demonstrated that all the synthesized derivatives can cross the blood-brain barrier (BBB) successfully. Docking analyses were performed by employing an induced-fit docking approach in the GLIDE module of Schrodinger, and the results were in agreement with their in vitro inhibitory activities. The present study resulted in the discovery of potent dual inhibitors toward MAO-B and BACE1, and these lead compounds can be fruitfully explored for the generation of newer, clinically active agents for the treatment of neurodegenerative disorders.


Asunto(s)
Amidas/química , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/química , Inhibidores de Proteasas/química , Amidas/síntesis química , Amidas/metabolismo , Barrera Hematoencefálica/metabolismo , Membranas Artificiales , Estructura Molecular , Inhibidores de la Monoaminooxidasa/metabolismo , Inhibidores de Proteasas/metabolismo
5.
Korean J Physiol Pharmacol ; 25(5): 385-393, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448456

RESUMEN

Tissue factor (TF) activates the coagulation system and has an important role in the pathogenesis of various diseases. Our previous study stated that retinoid receptors (RAR-α and RXR-α) are released as a lipid droplet in monocrotaline/ lipopolysaccharide-induced idiosyncratic liver toxicity in mice. Herein, the interdependence between the release of retinoid receptors RAR-α and RXR-α and TF in Nacetyl-p-aminophenol (APAP)-induced mice liver toxicity, is investigated. Serum alanine transaminase (ALT) level, platelet and white blood cells (WBCs) counts, protein expression of fibrin, TF, cyclin D1 and cleaved caspase-3 in liver tissues are analyzed. In addition, histopathological evaluation and survival study are also performed. The results indicate that using of TF-antisense (TF-AS) deoxyoligonucleotide (ODN) injection (6 mg/kg), to block TF protein synthesis, significantly restores the elevated level of ALT and WBCs and corrects thrombocytopenia in mice injected with APAP. TF-AS prevents the peri-central overexpression of liver TF, fibrin, cyclin D1 and cleaved caspase- 3. The release of RXR-α and RAR-α droplets, in APAP treated sections, is inhibited upon treatment with TF-AS. In conclusion, the above findings designate that the released RXR-α and RAR-α in APAP liver toxicity is TF dependent. Additionally, the enhancement of cyclin D1 to caspase-3-dependent apoptosis can be prevented by blocking of TF protein synthesis.

6.
Blood ; 132(21): 2298-2304, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30237155

RESUMEN

Thus far, the association between residual vein occlusion and immediate compression therapy and postthrombotic syndrome is undetermined. Therefore, we investigated whether compression therapy immediately after diagnosis of deep vein thrombosis affects the occurrence of residual vein obstruction (RVO), and whether the presence of RVO is associated with postthrombotic syndrome and recurrent venous thromboembolism. In a prespecified substudy within the IDEAL (individualized duration of elastic compression therapy against long-term duration of therapy for prevention of postthrombotic syndrome) deep vein thrombosis (DVT) study, 592 adult patients from 10 academic and nonacademic centers across The Netherlands, with objectively confirmed proximal DVT of the leg, received no compression or acute compression within 24 hours of diagnosis of DVT with either multilayer bandaging or compression hosiery (pressure, 35 mm Hg). Presence of RVO and recurrent venous thromboembolism was confirmed with compression ultrasonography and incidence of postthrombotic syndrome as a Villalta score of at least 5 at 6 and 24 months. The average time from diagnosis until assessment of RVO was 5.3 (standard deviation, 1.9) months. A significantly lower percentage of patients who did receive compression therapy immediately after DVT had RVO (46.3% vs 66.7%; odds ratio, 0.46; 95% confidence interval, 0.27-0.80; P = .005). Postthrombotic syndrome was less prevalent in patients without RVO (46.0% vs 54.0%; odds ratio, 0.65; 95% confidence interval, 0.46-0.92; P = .013). Recurrent venous thrombosis showed no significant association with RVO. Immediate compression should therefore be offered to all patients with acute DVT of the leg, irrespective of severity of complaints. This study was registered at ClinicalTrials.gov (NCT01429714) and the Dutch Trial registry in November 2010 (NTR2597).


Asunto(s)
Síndrome Postrombótico/prevención & control , Medias de Compresión , Tromboembolia Venosa/prevención & control , Trombosis de la Vena/terapia , Adulto , Anciano , Humanos , Incidencia , Persona de Mediana Edad , Síndrome Postrombótico/etiología , Recurrencia , Prevención Secundaria , Resultado del Tratamiento , Tromboembolia Venosa/etiología
7.
Molecules ; 25(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650478

RESUMEN

Premna odorata Blanco (Lamiaceae) is an ethnomedicinal plant native to different tropical regions. Although some reports addressed their anti-inflammatory, cytotoxic, and antituberculotic effects, their hepatoprotective potential is yet to be discovered. Accordingly, this study investigated the crude extract and different fractions of the plant leaves; metabolic profiling using liquid chromatography/high-resolution electrospray ionization mass spectroscopy (LC-HRESIMS) analysis, in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties for the dereplicated metabolite via online PreADMET program, ROS scavenger activity on the Hep G2 human liver cancer cell line, and the possible hepatic cellular treatment effects in alcohol-inflamed liver female Wistar albino rats. Metabolic profiling dereplicated a total of 28 metabolites from the crude extract and its various fractions. In silico ADMET and ROS scavenger activity screening suggested plant metabolites are of potential bioactivity. In vivo hepatic treatment with crude, defatted crude, and n-hexane leave extracts suggested all extracts significantly improved liver damage, which was indicated by the reduction of elevated serum levels of bilirubin, AST, ALT, ALP, CRP, TNF-α, ICAM-1, VCAM-1, and MDA. The reduced levels of GSH and TAC were normalized during the study. Histological examinations of liver tissue showed collagen fiber distribution nearly back to its normal pattern. The anti-inflammatory and antioxidant potentials of Premna odorata extracts could be partly related to the combined effects of these phytochemicals or their synergistic interactions.


Asunto(s)
Antiinflamatorios , Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Etanol/efectos adversos , Lamiaceae/química , Hígado , Hojas de la Planta/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Etanol/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Polifenoles/química , Polifenoles/farmacología , Ratas , Ratas Wistar , Terpenos/química , Terpenos/farmacología
8.
Mar Drugs ; 17(7)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31336764

RESUMEN

The combination of liquid chromatography coupled to high resolution mass spectrometry (LC-HRESMS)-based dereplication and antiproliferative activity-guided fractionation was applied on the Red Sea-derived soft coral Sarcophyton sp. This approach facilitated the isolation of five new cembrane-type diterpenoids (1-5), along with two known analogs (6 and 7), as well as the identification of 19 further, known compounds. The chemical structures of the new compounds were elucidated while using comprehensive spectroscopic analyses, including one-dimensional (1D) and two-dimensional (2D) NMR and HRMS. All of the isolated cembranoids (1-7) showed moderate in vitro antiproliferative activity against a human breast cancer cell line (MCF-7), with IC50 ranging from 22.39-27.12 µg/mL. This class of compounds could thus serve as scaffold for the future design of anticancer leads.


Asunto(s)
Antozoos/química , Antineoplásicos/farmacología , Diterpenos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Diterpenos/química , Diterpenos/aislamiento & purificación , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Océano Índico , Concentración 50 Inhibidora , Células MCF-7 , Estructura Molecular
9.
Mar Drugs ; 17(8)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31395834

RESUMEN

In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32% and 41.76% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents.


Asunto(s)
Alcaloides/farmacología , Callyspongia/química , Oxindoles/farmacología , Animales , Antiinfecciosos/farmacología , Antiprotozoarios/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Células HT29 , Halogenación , Humanos , Océano Índico , Pruebas de Sensibilidad Microbiana/métodos
10.
Mar Drugs ; 16(8)2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061488

RESUMEN

Fungi usually contain gene clusters that are silent or cryptic under normal laboratory culture conditions. These cryptic genes could be expressed for a wide variety of bioactive compounds. One of the recent approaches to induce production of such cryptic fungal metabolites is to use histone deacetylases (HDACs) inhibitors. In the present study, the cultures of the marine-derived fungus Penicillium brevicompactum treated with nicotinamide and sodium butyrate were found to produce a lot of phenolic compounds. Nicotinamide treatment resulted in the isolation and identification of nine compounds 1⁻9. Sodium butyrate also enhanced the productivity of anthranilic acid (10) and ergosterol peroxide (11). The antioxidant as well as the antiproliferative activities of each metabolite were determined. Syringic acid (4), sinapic acid (5), and acetosyringone (6) exhibited potent in vitro free radical scavenging, (IC50 20 to 30 µg/mL) and antiproliferative activities (IC50 1.14 to 1.71 µM) against HepG2 cancer cell line. Furthermore, a pharmacophore model of the active compounds was generated to build up a structure-activity relationship.


Asunto(s)
Organismos Acuáticos/metabolismo , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Penicillium/metabolismo , Fenoles/metabolismo , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/genética , Ácido Butírico/farmacología , Cromatografía Líquida de Alta Presión , Ensayos de Selección de Medicamentos Antitumorales , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/metabolismo , Depuradores de Radicales Libres/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular , Niacinamida/farmacología , Penicillium/efectos de los fármacos , Penicillium/genética , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Relación Estructura-Actividad
11.
Phytother Res ; 31(10): 1546-1556, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28809058

RESUMEN

Phytochemical investigation of Premna odorata Blanco, Lamiaceae, leaves afforded three new acylated iridoid glycosides 1-3 and two new acylated rhamnopyranoses 9 and 10, in addition to ten known compounds. The structures of the new compounds were confirmed using extensive 1D and 2D NMR analysis. Molecular modeling study suggested the potential of the acylated rhamnopyranoses to bind at the c-Met kinase domain. Cell-free Z'-LYTE™ assay testing revealed the good c-Met phosphorylation inhibitory activity of 9, followed by 8, and 10, with IC50 values of 2.5, 6.9, and 12.7 µM, respectively. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay testing against the human c-Met expressing highly invasive MDA-MB-231 suggested compound 9 as the most active with IC50 value of 13.3 µM. Testing of compound 9 against multiple phenotypic breast cancer cell lines including MCF-7, BT-474 cells, and MDA-MB-468 proved enhanced activity against the highly c-Met expressing triple-negative breast cancer cell lines. Acylated rhamnopyranoses are potential novel c-Met inhibitors appropriate for future optimizations to control c-Met-dependent breast malignancies. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Iridoides/farmacología , Lamiaceae/química , Acilación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias de la Mama Triple Negativas
12.
Saudi Pharm J ; 25(2): 236-240, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28344474

RESUMEN

Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Moreover, the severe side effects and the reported drug resistance make it an urgent need to search for effective drugs that can replace or supplement those currently used. In a research program designed to investigate the antileishmanial activity of plants collected from the Egyptian flora, twenty extracts from fifteen plants growing in Egypt have been investigated for in vitro leishmanicidal activity against Leishmania donovani promastigotes. Among the tested extracts, the methanol extract of Euphorbia peplus aerial parts exhibited a significant antileishmanial activity as it produced 100% inhibition of growth with activity similar to amphotericin B. The total extract was subjected to liquid-liquid fractionation using solvents of different polarities, followed by testing the antileishmanial activity of the successive fractions. Phytochemical exploration of the active n-hexane fraction (which produced 75% inhibition of growth) led to isolation of four compounds: simiarenol (1), 1-hexacosanol (2), ß-sitosterol (3), and ß-sitosterol-3-O-glucoside (4) from the biologically active sub-fractions. Structure elucidation was aided by 1D and 2D NMR techniques. In conclusion, E. peplus plant has many non-polar secondary metabolites that can be used as drug leads for treatment of leishmaniasis.

13.
Lancet ; 391(10116): 121-122, 2018 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-29353618

Asunto(s)
Neoplasias , Obesidad , Humanos
14.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37895941

RESUMEN

Suaeda vermiculata Forssk. ex JF Gmel. (SV), a traditional known plant, has shown in vitro cytotoxic activity against HepG2 and HepG-2/ADR (doxorubicin-resistant cells) liver cell carcinoma cell lines, as well as hepatoprotection against paracetamol and carbon tetrachloride (CCl4)-induced liver injury. The current study evaluated the protective effect of SV, administered against N-diethylnitrosamine (NDEA)-induced HCC in rats. The possible modulatory effect of SV on the PI3K/HIF-1α/c-MYC/iNOS pathway was investigated. Sixty male adult albino rats (200 ± 10 g) were equally classified into five groups. Group I served as a control; Group 2 (SV control group) received SV (p.o., 200 mg/kg body weight); Group 3 (NDEA-administered rats) received freshly prepared NDEA solution (100 mg/L); and Groups 4 and 5 received simultaneously, for 16 weeks, NDEA + SV extract (100 and 200 mg/kg, orally). NDEA-treated rats displayed significant increases in serum levels of AFP, CEA, PI3K, malondialdehyde (MDA), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGFR), with increased liver tissue protein expression of fibrinogen concomitant and significantly decreased concentrations of antioxidant parameters (catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH)) in comparison to normal rats. On the flip side, AFP, CEA, PI3K, MDA, EGFR, and VEGFR serum levels were significantly reduced in rats that received NDEA with SV, both at low (SV LD) and high (SV HD) doses, accompanied by significant improvements in antioxidant parameters compared to the NDEA-treated group. Conclusions: SV possesses a significant hepatoprotective effect against NDEA-induced HCC via inhibiting the PI3K/HIF-1α/c-MYC/iNOS pathway, suggesting that SV could be a promising hepatocellular carcinoma treatment.

15.
BMC Complement Med Ther ; 23(1): 464, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104070

RESUMEN

BACKGROUND: The plant kingdom has long been considered a valuable source for therapeutic agents, however, some plant species still untapped and need to be phytochemically and biologically explored. Although several Atriplex species have been investigated in depth, A. leucoclada, a halophytic plant native to Saudi Arabian desert, remains to be explored for its phytochemical content and biological potentials. Herein, the current study investigated the metabolic content and the anti-inflammatory potential of A. leucoclada. METHODS: Powdered aerial parts of the plant were defatted with n-hexane then the defatted powder was extracted with 80% methanol. n-Hexane extract (ATH) was analyzed using GC-MS, while the defatted extract (ATD) was subjected to different chromatographic methods to isolate the major phytoconstituents. The structures of the purified compounds were elucidated using different spectroscopic methods including advanced NMR techniques. Anti-inflammatory activity of both extracts against COX-1 and COX-2 enzymes were examined in vitro. Molecular docking of the identified compounds into the active sites of COX-1 and COX-2 enzymes was conducted using pdb entries 6Y3C and 5IKV, respectively. RESULTS: Phytochemical investigation of ATD extract led to purification and identification of nine compounds. Interestingly, all the compounds, except for 20-hydroxy ecdysone (1), are reported for the first time from A. leucoclada, also luteolin (6) and pallidol (8) are isolated for the first time from genus Atriplex. Inhibitory activity of ATD and ATH extracts against COX-1 and COX-2 enzymes revealed concentration dependent activity of both fractions with IC50 41.22, 14.40 µg/ml for ATD and 16.74 and 5.96 µg/ml for ATH against COX-1 and COX-2, respectively. Both extracts displayed selectivity indices of 2.86 and 2.80, respectively as compared to 2.56 for Ibuprofen indicating a promising selectivity towards COX-2. Molecular docking study supported in vitro testing results, where purified metabolites showed binding affinity scores ranged from -9 to -6.4 and -8.5 to -6.6 kcal/mol for COX-1 and 2, respectively, in addition the binding energies of GC-MS detected compounds ranged from -8.9 to -5.5 and -8.3 to -5.1 kcal/mol for COX-1 and 2, respectively as compared to Ibuprofen (-6.9 and -7.5 kcal/mol, respectively), indicating high binding affinities of most of the compounds. Analysis of the binding orientations revealed variable binding patterns depending on the nature of the compounds. Our study suggested A. leucoclada as a generous source for anti-inflammatory agents.


Asunto(s)
Atriplex , Atriplex/metabolismo , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , Ciclooxigenasa 2/metabolismo , Ibuprofeno , Arabia Saudita , Antiinflamatorios/farmacología , Antiinflamatorios/química , Fitoquímicos/farmacología , Fitoquímicos/química
16.
J AOAC Int ; 95(3): 757-62, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22816267

RESUMEN

Triterpenoid saponins are a class of glycosides with a wide range of bioactivities, which make them interesting research candidates. Zygophyllum coccineum is an Egyptian desert plant rich in triterpenoid saponins. Reviewing the relevant literature, no data concerning the HPLC or ultra-performance LC (UPLC) analysis of Zygophyllum content were found. This paper presents two methods, HPLC-UV and UPLC-UV-evaporative light scattering detector (ELSD)/MS, for the simultaneous determination of 10 compounds in the alcohol extract of Z. coccineum. The HPLC method uses a C18 column and water-acetonitrile (both containing 0.1% trifluoroacetic acid) gradient system. The separation was achieved within 32 min. The developed UPLC method simultaneously detects and quantifies the 10 compounds using an Acquity UPLC BEH Shield RP18 column and reagent alcohol-acetonitrile (80/20, v/v) and water (both containing 0.5% formic acid) gradient system within 14 min with UV, ELS, and MS detectors. The methods were used to analyze another species, Z. simplex, and results revealed a great variation between the secondary metabolite pattern of both species.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Saponinas/análisis , Zygophyllum/química
17.
Pharmaceutics ; 14(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335970

RESUMEN

Background: CXCL16 attracts T-cells to the site of inflammation after cleaving by A Disintegrin and Metalloproteinase (ADAM10). Aim: The current study explored the role of ADAM10/CXCL16/T-cell/NF-κB in the initiation of type 1 diabetes (T1D) with special reference to the potential protecting role of resveratrol (RES). Methods: Four sets of Balb/c mice were created: a diabetes mellitus (DM) group (streptozotocin (STZ) 55 mg/kg, i.p.], a control group administered buffer, a RES group [RES, 50 mg/kg, i.p.), and a DM + RES group (RES (50 mg/kg, i.p.) and STZ (55 mg/kg, i.p.) administered daily for 12 days commencing from the fourth day of STZ injection). Histopathological changes, fasting blood insulin (FBI), glucose (FBG), serum and pancreatic ADAM10, CXCL16, NF-κB, T-cells pancreatic expression, inflammatory, and apoptotic markers were analyzed. Results: FBG, inflammatory and apoptotic markers, serum TNF-α, cellular CXCL16 and ADAM10 protein expression, pancreatic T-cell migration and NF-κB were significantly increased in diabetic mice compared to normal mice. RES significantly improved the biochemical and inflammatory parameters distorted in STZ-treated mice. Conclusions: ADAM10 promotes the cleaved form of CXCL16 driving T-cells into the islets of the pancreatic in T1D. RES successfully prevented the deleterious effect caused by STZ. ADAM10 and CXCL16 may serve as novel therapeutic targets for T1D.

18.
Life (Basel) ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430987

RESUMEN

Natural products continue to provide inspiring chemical moieties that represent a key stone in the drug discovery process. As per our previous research, the halophyte Agathophora alopecuroides was noted as a potential antidiabetic plant. However, the chemical profiling and highlighting the metabolite(s) responsible for the observed antidiabetic activity still need to be investigated. Accordingly, the present study presents the chemical profiling of this species using the LC-HRMS/MS technique followed by a study of the ligand-protein interaction using the molecular docking method. LC-HRMS/MS results detected twenty-seven compounds in A. alopecuroides extract (AAE) belonging to variable chemical classes. Among the detected compounds, alkaloids, flavonoids, lignans, and iridoids were the most prevailing. In order to highlight the bioactive compounds in AAE, the molecular docking technique was adopted. Results suggested that the two alkaloids (Eburnamonine and Isochondrodendrine) as well as the four flavonoids (Narirutin, Pelargonidin 3-O-rutinoside, Sophora isoflavanone A, and Dracorubin) were responsible for the observed antidiabetic activity. It is worth mentioning that this is the first report for the metabolomic profiling of A. alopecuroides as well as the antidiabetic potential of Isochondrodendrine, Sophora isoflavanone A, and Dracorubin that could be a promising target for an antidiabetic drug.

19.
Life Sci ; 289: 120224, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896343

RESUMEN

BACKGROUND: T cell mediates immune response in type 1 diabetes mellitus (T1DM) through its trafficking into pancreatic islets. The role of A Disintigrin And Metalloproteinase 10 (ADAM10) and 17 (ADAM17) in pancreatic T-cells recruitment into the pancreatic islets during T1DM is not known. AIM: Explore the role of ADAM10 and ADAM17 in the processing of CXCL16 in T1DM and possible protective effect of simvastatin (SIM) in streptozotocin (STZ)-induced T1DM. MAIN METHODS: Balb/c mice were classified into 4 groups, 10 each. Control group received buffer while SIM group received 50 mg/kg, i.p daily for 12 days starting from day 4 of the experiment. Diabetic group; received STZ (55 mg/kg, i.p.) for 5 consecutive days starting from day 1 of the experiment. SIM + STZ group; received SIM (50 mg/kg, i.p.) daily for 12 days and STZ (55 mg/kg, i.p.) for 5 consecutive days. Biochemical, inflammatory and apoptotic markers as well as expression of CXCL16, ADAM10, NF-κB and pancreatic T-cells expression were analyzed. KEY FINDINGS: Significant increase in biochemical, inflammatory, apoptotic parameters, expression of ADAM10, ADAM17, CXCL16, NF-κB, and infiltrated T-cells to the pancreatic islets were found in STZ group. SIM treatment in the presence of STZ improved biochemical and inflammatory parameters as well as it reduced the expression of CXCL16, ADAM10, ADAM17, NF-κΒ, T-cells migration and apoptosis in the pancreatic islets. SIGNIFICANCE: SIM mitigated pancreatic ß-cell death induced by STZ through down regulation of ADAM10, ADAM17and CXCL16. Therefore, ADAM10/ADAM17 and CXCL16 may serve as novel therapeutic targets for T1DM.


Asunto(s)
Proteína ADAM10/biosíntesis , Proteína ADAM17/biosíntesis , Secretasas de la Proteína Precursora del Amiloide/biosíntesis , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Regulación hacia Abajo/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Proteínas de la Membrana/biosíntesis , Simvastatina/farmacología , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/enzimología , Masculino , Ratones , Ratones Endogámicos BALB C
20.
Plants (Basel) ; 11(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35406868

RESUMEN

Genus Tabebuia is famous for its traditional uses and valuable phytoconstituents. Our previous investigation of Tabebuia species noted the promising anticancer activity of T. guayacan Hemsl. leaves extract, however, the mechanism underlying the observed anticancer activity is still unexplored. The current research was designed to explore the phytochemical content as well as to address the phytoconstituent(s) responsible for the recorded anticancer activity. Accordingly, sixteen compounds were isolated, and their structures were elucidated using different spectroscopic techniques. The drug-likeness of the isolated compounds, as well as their binding affinity with four anticancer drug target receptors: CDK-2/6, topoisomerase-1, and VEGFR-2, were evaluated. Additionally, the most promising compounds were in vitro evaluated for inhibitory activities against CDK-2/6 and VEGFR-2 enzymes using kinase assays method. Corosolic acid (3) and luteolin-7-O-ß-glucoside (16) were the most active inhibitors against CDK-2 (-13.44 kcal/mol) and topoisomerase 1 (-13.83 kcal/mol), respectively. Meanwhile, quercetin 3-O-ß-xyloside (10) scored the highest binding free energies against both CDK-6 (-16.23 kcal/mol) as well as against VEGFR-2 protein targets (-10.39 kcal/mol). Molecular dynamic simulation indicated that quercetin 3-O-ß-xyloside (10) exhibited the least fluctuations and deviations from the starting binding pose with RMSD (2.6 Å). Interestingly, in vitro testing results confirmed the potent activity of 10 (IC50 = 0.154 µg/mL) compared to IC50 = 0.159 µg/mL of the reference drug ribociclib. These findings suggest the three noted compounds (3, 10, and 16) for further in vivo anticancer studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA