Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Ther Med ; 25(5): 212, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37123217

RESUMEN

Colorectal cancer (CRC) is one of the most prevalent malignant cancer types worldwide. Although the purine metabolism pathway is vital for cancer cell survival, little is known about the role of equilibrative nucleoside transporter 2 (ENT2) in CRC development and its association with purine metabolites. The aim of the present study was to evaluate the levels of hypoxanthine phosphoribosyl transferase (HPRT), hypoxanthine and uric acid (UA), as well as xanthine oxidase (XO) activity, and investigate their association with ENT2 expression levels in a normal human colon cell line and CRC cell lines derived from different stages of CRC. These analyses were performed using the normal colon CCD-841CoN cell line and a panel of human CRC cell lines comprising SW480, HCT15 and HCT116, which represent Dukes' B, C and D stages, respectively. Reverse transcription-quantitative PCR was performed to determine the level of ENT2 mRNA expression. In cells of all CRC stages, the levels of HPRT and hypoxanthine were significantly higher (P<0.05), while XO activity and UA levels were significantly decreased (P<0.05), compared with those in the CCD-841CoN cell line. ENT2 expression was found to be elevated in cells derived from all stages of CRC. The Dukes' D stage cell line had higher levels of HPRT and hypoxanthine, although its ENT2 level was not significantly lower than that of the Dukes' B and C stage cell lines. Increased levels of HPRT and hypoxanthine in various stages of CRC may indicate an increase in the activity of the salvage pathway. The increased expression of ENT2 implies the importance of the ENT2 protein in facilitating hypoxanthine transport, which is required for enhanced DNA synthesis via hypoxanthine recycling. In conclusion, ENT2 may have potential as a target in the development of CRC therapeutics.

2.
Bioimpacts ; 11(1): 33-43, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33469506

RESUMEN

Introduction: The serum metabolomics approach has been used to identify metabolite biomarkers that can diagnose colorectal cancer (CRC) accurately and specifically. However, the biomarkers identified differ between studies suggesting that more studies need to be performed to understand the influence of genetic and environmental factors. Therefore, this study aimed to identify biomarkers and affected metabolic pathways in Malaysian CRC patients. Methods: Serum from 50 healthy controls and 50 CRC patients were collected at UKM Medical Centre. The samples were deproteinized with acetonitrile and untargeted metabolomics profile determined using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOFMS, Agilent USA). The data were analysed using Mass Profiler Professional (Agilent, USA) software. The panel of biomarkers determined were then used to identify CRC from a new set of 20 matched samples. Results: Eleven differential metabolites were identified whose levels were significantly different between CRC patients compared to normal controls. Based on the analysis of the area under the curve, 7 of these metabolites showed high sensitivity and specificity as biomarkers. The use of the 11 metabolites on a new set of samples was able to differentiate CRC from normal samples with 80% accuracy. These metabolites were hypoxanthine, acetylcarnitine, xanthine, uric acid, tyrosine, methionine, lysoPC, lysoPE, citric acid, 5-oxoproline, and pipercolic acid. The data also showed that the most perturbed pathways in CRC were purine, catecholamine, and amino acid metabolisms. Conclusion: Serum metabolomics profiling can be used to identify distinguishing biomarkers for CRC as well as to further our knowledge of its pathophysiological mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA