Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339184

RESUMEN

The skin is the primary tissue affected by wounds and aging, significantly impacting its protective function. Natural products are widely used in cosmetics, representing a new approach to preventing age-related damage. Nanomedicine combines nanotechnology and traditional treatments to create innovative drugs. The main targets of nanotechnological approaches are wound healing, regeneration, and rejuvenation of skin tissue. The skin barrier is not easily permeable, and the creation of modern nanodevices is a way to improve the passive penetration of substances. In this study, Helichrysum italicum oil (HO) was combined with different types of electrospun nanofibers to study their protective activity on the skin and to evaluate their future application for topical treatments. In the present research, we used biodegradable polymers, including polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), which were characterized by a scanning electron microscope (SEM). All results show a positive trend in cell proliferation and viability of human skin stem cells (SSCs) and BJ fibroblasts pre-treated with combined nanofibers and then exposed to UV stress. Gene expression analysis revealed the activation of a molecular rejuvenation program in SSCs treated with functionalized nanofibers before UV exposure. Understanding the mechanisms involved in skin changes during aging allows for the future application of nanomaterials combined with HO directly to the patients.


Asunto(s)
Productos Biológicos , Nanofibras , Envejecimiento de la Piel , Humanos , Productos Biológicos/farmacología , Piel , Cicatrización de Heridas , Alcohol Polivinílico
2.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37511111

RESUMEN

Breast cancer is the most prevalent cancer type in women worldwide. It proliferates rapidly and can metastasize into farther tissues at any stage due to the gradual invasiveness and motility of the tumor cells. These crucial properties are the outcome of the weakened intercellular adhesion, regulated by small guanosine triphosphatases (GTPases), which hydrolyze to the guanosine diphosphate (GDP)-bound conformation. We investigated the inactivating effect of ARHGAP1 on Rho GTPases involved signaling pathways after treatment with a high dose of doxorubicin. Label-free quantitative proteomic analysis of the proteome isolated from the MCF-7 breast cancer cell line, treated with 1 µM of doxorubicin, identified RAC1, CDC42, and RHOA GTPases that were inactivated by the ARHGAP1 protein. Upregulation of the GTPases involved in the transforming growth factor-beta (TGF-beta) signaling pathway initiated epithelial-mesenchymal transitions. These findings demonstrate a key role of the ARHGAP1 protein in the disruption of the cell adhesion and simultaneously allow for a better understanding of the molecular mechanism of the reduced cell adhesion leading to the subsequent metastasis. The conclusions of this study corroborate the hypothesis that chemotherapy with doxorubicin may increase the risk of metastases in drug-resistant breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Proteínas Activadoras de GTPasa , Proteínas de Unión al GTP rho , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Proteína de Unión al GTP cdc42/metabolismo , Doxorrubicina/farmacología , Proteínas Activadoras de GTPasa/metabolismo , Células MCF-7 , Proteómica , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
3.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743278

RESUMEN

MicroRNAs (miRNA) are key regulators of gene expression, controlling different biological processes such as cellular development, differentiation, proliferation, metabolism, and apoptosis. The relationships between miRNA expression and the onset and progression of different diseases, such as tumours, cardiovascular and rheumatic diseases, and neurological disorders, are well known. A nanotechnology-based approach could match miRNA delivery and detection to move beyond the proof-of-concept stage. Different kinds of nanotechnologies can have a major impact on the diagnosis and treatment of miRNA-related diseases such as cancer. Developing novel methodologies aimed at clinical practice represents a big challenge for the early diagnosis of specific diseases. Within this context, nanotechnology represents a wide emerging area at the forefront of research over the last two decades, whose potential has yet to be fully attained. Nanomedicine, derived from nanotechnology, can exploit the unique properties of nanometer-sized particles for diagnostic and therapeutic purposes. Through nanomedicine, specific treatment to counteract only cancer-cell proliferation will be improved, while leaving healthy cells intact. In this review, we dissect the properties of different nanocarriers and their roles in the early detection and treatment of cancer.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/metabolismo , Nanomedicina , Nanotecnología/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia
4.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35163550

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA molecules that play a role in cancer linked to the regulation of important cellular processes and pathways involving tumorigenesis, cell proliferation, differentiation, and apoptosis. A lot of human miRNA sequences have been identified which are linked to cancer pathogenesis. MicroRNAs, in prostate cancer (PC), play a relevant role as biomarkers, show a specific profile, and have been used as therapeutic targets. Prostate cancer (PC) is the most frequently diagnosed cancer in men. Clinical diagnoses among the gold standards for PC diagnosis and monitoring are prostate-specific antigen (PSA) testing, digital rectal examination, and prostate needle biopsies. PSA screening still has a large grey area of patients, which leads to overdiagnosis. Therefore, new biomarkers are needed to improve existing diagnostic tools. The miRNA expression profiles from tumour versus normal tissues are helpful and exhibit significant differences not only between cancerous and non-cancerous tissues, but also between different cancer types and subtypes. In this review, we focus on the role of miRNAs-145, 148, and 185 and their correlation with stem cells in prostate cancer pathogenesis. MiR-145, by modulating multiple oncogenes, regulates different cellular processes in PC, which are involved in the transition from localised to metastatic disease. MiR-148 is downregulated in high-grade tumours, suggesting that the miR-148-3 family might act as tumour suppressors in PC as a potential biomarker for detecting this disease. MiR-185 regulation is still unclear in being able to regulate tumour processes in PC. Nevertheless, other authors confirm the role of this miRNA as a tumour suppressor, suggesting its potential use as a suitable biomarker in disease prognosis. These three miRNAs are all involved in the regulation of prostate cancer stem cell behaviour (PCSCs). Within this contest, PCSCs are often involved in the onset of chemo-resistance in PC, therefore strategies for targeting this subset of cells are strongly required to control the disease. Hence, the relationship between these two players is interesting and important in prostate cancer pathogenesis and in PCSC stemness regulation, in the attempt to pave the way for novel therapeutic targets in prostate cancer.


Asunto(s)
MicroARNs/genética , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/patología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Clasificación del Tumor , Células Madre Neoplásicas/química , Pronóstico , Neoplasias de la Próstata/genética
5.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209468

RESUMEN

Skin is the external part of the human body; thus, it is exposed to outer stimuli leading to injuries and damage, due to being the tissue mostly affected by wounds and aging that compromise its protective function. The recent extension of the average lifespan raises the interest in products capable of counteracting skin related health conditions. However, the skin barrier is not easy to permeate and could be influenced by different factors. In the last decades an innovative pharmacotherapeutic approach has been possible thanks to the advent of nanomedicine. Nanodevices can represent an appropriate formulation to enhance the passive penetration, modulate drug solubility and increase the thermodynamic activity of drugs. Here, we summarize the recent nanotechnological approaches to maintain and replace skin homeostasis, with particular attention to nanomaterials applications on wound healing, regeneration and rejuvenation of skin tissue. The different nanomaterials as nanofibers, hydrogels, nanosuspensions, and nanoparticles are described and in particular we highlight their main chemical features that are useful in drug delivery and tissue regeneration.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanoestructuras/uso terapéutico , Regeneración/efectos de los fármacos , Rejuvenecimiento , Fenómenos Fisiológicos de la Piel/efectos de los fármacos , Piel/metabolismo , Animales , Humanos
6.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926125

RESUMEN

Platelet concentrates and especially their further product platelet lysate, are widely used as a replacement for cell culturing. Platelets contain a broad spectrum of growth factors and bioactive molecules that affect cellular fate. However, the cellular response to individual components of the human platelet concentrate is still unclear. The aim of this study was to observe cellular behavior according to the individual components of platelet concentrates. The bioactive molecule content was determined. The cells were supplemented with a medium containing 8% (v/v) of platelet proteins in plasma, pure platelet proteins in deionized water, and pure plasma. The results showed a higher concentration of fibrinogen, albumin, insulin growth factor I (IGF-1), keratinocyte growth factor (KGF), and hepatocyte growth factor (HGF), in the groups containing plasma. On the other hand, chemokine RANTES and platelet-derived growth factor bb (PDGF-bb), were higher in the groups containing platelet proteins. The groups containing both plasma and plasma proteins showed the most pronounced proliferation and viability of mesenchymal stem cells and fibroblasts. The platelet proteins alone were not sufficient to provide optimal cell growth and viability. A synergic effect of platelet proteins and plasma was observed. The data indicated the importance of plasma in platelet lysate for cell growth.


Asunto(s)
Plaquetas/química , Plaquetas/metabolismo , Plasma Rico en Plaquetas/metabolismo , Albúminas , Becaplermina/metabolismo , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Quimiocinas/metabolismo , Medios de Cultivo/química , Fibrinógeno/metabolismo , Factor 7 de Crecimiento de Fibroblastos , Fibroblastos/metabolismo , Factor de Crecimiento de Hepatocito , Humanos , Factor I del Crecimiento Similar a la Insulina , Células Madre Mesenquimatosas/metabolismo , Plasma/química , Proteínas Proto-Oncogénicas c-sis/metabolismo
7.
Platelets ; 29(4): 395-405, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28649896

RESUMEN

Platelets are a popular source of native growth factors for tissue engineering applications. The aim of the study was to verify the use of platelet lysate as a fetal bovine serum (FBS) replacement for skin cell culture. The cytokine content of the platelet lysate was characterized using the Bio-Plex system. The cells (fibroblasts, melanocytes, and keratinocytes) were cultured on PCL nanofibrous scaffolds to mimic their natural microenvironment. The cytokine content of the platelet lysate was determined, and to the cells, a medium containing platelet lysate or platelet lysate in combination with FBS was added. The results showed that 7% (v/v) platelet lysate was sufficient to supplement 10% (v/v) FBS in the culture of fibroblasts and keratinocytes. The combination of platelet lysate and FBS had a rather inhibitory effect on fibroblasts, in contrary to keratinocytes, where the effect was synergic. Platelet lysate did not sufficiently promote proliferation in melanocytes; however, the combination of FBS and platelet lysate yielded a better outcome and resulted in bipolar morphology of the cultured melanocytes. The data indicated that platelet lysate improved cell proliferation and metabolic activity and may be used as an additive to the cell culture media.


Asunto(s)
Biomimética/métodos , Plaquetas/metabolismo , Nanofibras/química , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos
8.
Clin Sci (Lond) ; 131(8): 699-713, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28209631

RESUMEN

Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells that have been successfully used in human bone tissue engineering. To establish whether these cells can lead to a bone tissue ready to be grafted, we checked DPSCs for their osteogenic and angiogenic differentiation capabilities with the specific aim of obtaining a new tool for bone transplantation. Therefore, hDPSCs were specifically selected from the stromal-vascular dental pulp fraction, using appropriate markers, and cultured. Growth curves, expression of bone-related markers, calcification and angiogenesis as well as an in vivo transplantation assay were performed. We found that hDPSCs proliferate, differentiate into osteoblasts and express high levels of angiogenic genes, such as vascular endothelial growth factor and platelet-derived growth factor A. Human DPSCs, after 40 days of culture, give rise to a 3D structure resembling a woven fibrous bone. These woven bone (WB) samples were analysed using classic histology and synchrotron-based, X-ray phase-contrast microtomography and holotomography. WB showed histological and attractive physical qualities of bone with few areas of mineralization and neovessels. Such WB, when transplanted into rats, was remodelled into vascularized bone tissue. Taken together, our data lead to the assumption that WB samples, fabricated by DPSCs, constitute a noteworthy tool and do not need the use of scaffolds, and therefore they are ready for customized regeneration.


Asunto(s)
Sustitutos de Huesos , Pulpa Dental/citología , Células Madre/citología , Ingeniería de Tejidos/métodos , Adulto , Animales , Trasplante Óseo/métodos , Calcificación Fisiológica/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Separación Celular/métodos , Células Cultivadas , Quimiotaxis , Humanos , Ratones Desnudos , Neovascularización Fisiológica/fisiología , Osteocalcina/metabolismo , Osteogénesis/fisiología , Microtomografía por Rayos X/métodos , Adulto Joven
9.
Mol Ther Nucleic Acids ; 35(1): 102140, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38425711

RESUMEN

MicroRNAs (miRNAs) are involved in post-transcriptional gene expression regulation and in mechanisms of cancer growth and metastases. In this light, miRNAs could be promising therapeutic targets and biomarkers in clinical practice. Therefore, we investigated if specific miRNAs and their target genes contribute to laryngeal squamous cell carcinoma (LSCC) development. We found a significant decrease of miR-449a in LSCC patients with nodal metastases (63.3%) compared with patients without nodal involvement (44%). The AmpliSeq Transcriptome of HNO-210 miR-449a-transfected cell lines allowed the identification of IL6-R as a potential target. Moreover, the downregulation of IL6-R and the phosphorylation reduction of the downstream signaling effectors, suggested the inhibition of the IL-6 trans-signaling pathway. These biochemical effects were paralleled by a significant inhibition of invasion and migration in vitro and in vivo, supporting an involvement of epithelial-mesenchymal transition. These findings indicate that miR-449a contributes to suppress the metastasization of LSCC by the IL-6 trans-signaling block and affects sensitivity to external stimuli that mimic pro-inflammatory conditions.

10.
Int J Biol Macromol ; 249: 126056, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37524280

RESUMEN

The paper aimed to prepare quaternary chitosan-based nanofibers as bioabsorbable wound dressings. To this aim, fully biodegradable chitosan/N,N,N-trimethyl chitosan (TMC) nanofibers were designed and prepared via electrospinning, using poly(ethylene glycol) as sacrificial additive. The new biomaterials were structurally and morphologically characterized by FTIR and NMR spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy, and their properties required for wound dressings application were investigated and discussed in detail. Thus, the nanofiber behavior was investigated by swelling, dynamic vapor sorption, and in vitro biodegradation in media mimicking the wound exudate. The mechanical properties were analysed from the stress-strain curves, the bioadhesivity from the texture analysis and the mucoadhesivity from the Zeta potential and transmittance measurements. The antimicrobial activity was assessed against S. aureus and E. coli strains, and the biocompatibility was tested in vitro on normal human dermal fibroblasts, and in vivo on rats. The application of the fiber mats with the best balance of properties as dressings on deep burn wound models in rats showed wound closure and active healing, with fully restoration of epithelia. It was concluded that the combination of chitosan with TMC into nanofibers provides new potential bioabsorbable wound dressing, opening new perspectives in regenerative medicine.


Asunto(s)
Quitosano , Nanofibras , Ratas , Humanos , Animales , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Nanofibras/química , Staphylococcus aureus , Escherichia coli , Implantes Absorbibles , Vendajes
11.
Mol Ther Nucleic Acids ; 33: 127-141, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37449042

RESUMEN

Nanodiamonds are innovative nanocrystalline carbon particles able to deliver chemically conjugated miRNAs. In oncology, the use of miRNA-based therapies may represent an advantage, based on their ability to simultaneously target multiple intracellular oncogenic targets. Here, nanodiamonds were tested and optimized to deliver miR-34a, a miRNA playing a key role in inhibiting tumor development and progression in many cancers. The physical-chemical properties of nanodiamonds were investigated suggesting electrical stability and uniformity of structure and size. Moreover, we evaluated nanodiamond cytotoxicity on two breast cancer cell models and confirmed their excellent biocompatibility. Subsequently, nanodiamonds were conjugated with miR-34a, using the chemical crosslinker polyethyleneimine; real-time PCR analysis revealed a higher level of miR-34a in cancer cells treated with the different formulations of nanodiamonds than with commercial transfectant. A significant and early nanodiamond-miR-34a uptake was recorded by FACS and fluorescence microscopy analysis in MCF7 and MDA-MB-231 cells. Moreover, nanodiamond-miR-34a significantly inhibited both cell proliferation and migration. Finally, a remarkable anti-tumor effect of miR-34a-conjugated nanodiamonds was observed in both heterotopic and orthotopic murine xenograft models. In conclusion, this study provides a rationale for the development of new therapeutic strategies based on use of miR-34a delivered by nanodiamonds to improve the clinical treatment of neoplasms.

12.
J Biomed Biotechnol ; 2012: 428503, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22319242

RESUMEN

Pulsed laser deposition was proved as a suitable method for hydroxyapatite (HA) coating of coaxial poly-ɛ-caprolactone/polyvinylalcohol (PCL/PVA) nanofibers. The fibrous morphology of PCL/PVA nanofibers was preserved, if the nanofiber scaffold was coated with thin layers of HA (200 nm and 400 nm). Increasing thickness of HA, however, resulted in a gradual loss of fibrous character. In addition, biomechanical properties were improved after HA deposition on PCL/PVA nanofibers as the value of Young's moduli of elasticity significantly increased. Clearly, thin-layer hydroxyapatite deposition on a nanofiber surface stimulated mesenchymal stem cell viability and their differentiation into osteoblasts. The optimal depth of HA was 800 nm.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas/citología , Nanofibras/química , Osteoblastos/citología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Poliésteres/química , Alcohol Polivinílico/química , Porcinos
13.
Biomacromolecules ; 13(4): 952-62, 2012 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-22401557

RESUMEN

The broader application of liposomes in regenerative medicine is hampered by their short half-life and inefficient retention at the site of application. These disadvantages could be significantly reduced by their combination with nanofibers. We produced 2 different nanofiber-liposome systems in the present study, that is, liposomes blended within nanofibers and core/shell nanofibers with embedded liposomes. Herein, we demonstrate that blend electrospinning does not conserve intact liposomes. In contrast, coaxial electrospinning enables the incorporation of liposomes into nanofibers. We report polyvinyl alcohol-core/poly-ε-caprolactone-shell nanofibers with embedded liposomes and show that they preserve the enzymatic activity of encapsulated horseradish peroxidase. The potential of this system was also demonstrated by the enhancement of mesenchymal stem cell proliferation. In conclusion, intact liposomes incorporated into nanofibers by coaxial electrospinning are very promising as a drug delivery system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas/química , Nanofibras/química , Proliferación Celular , Supervivencia Celular , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tamaño de la Partícula , Propiedades de Superficie
14.
J Mater Sci Mater Med ; 23(2): 555-63, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22223027

RESUMEN

The structural properties of microfiber meshes made from poly(2-hydroxyethyl methacrylate) (PHEMA) were found to significantly depend on the chemical composition and subsequent cross-linking and nebulization processes. PHEMA microfibres showed promise as scaffolds for chondrocyte seeding and proliferation. Moreover, the peak liposome adhesion to PHEMA microfiber scaffolds observed in our study resulted in the development of a simple drug anchoring system. Attached foetal bovine serum-loaded liposomes significantly improved both chondrocyte adhesion and proliferation. In conclusion, fibrous scaffolds from PHEMA are promising materials for tissue engineering and, in combination with liposomes, can serve as a simple drug delivery tool.


Asunto(s)
Materiales Biocompatibles/química , Condrocitos/citología , Polihidroxietil Metacrilato/química , Andamios del Tejido/química , Animales , Bovinos , Adhesión Celular , Proliferación Celular , Reactivos de Enlaces Cruzados/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Liposomas/química , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Polímeros/química , Ingeniería de Tejidos/métodos
15.
Int J Nanomedicine ; 17: 6335-6345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36540375

RESUMEN

Background: A current topic of ma jor interest in regenerative medicine is the development of novel materials for accelerated healing of sutures, and nanofibers seem to be suitable materials for this purpose. As various studies have shown, nanofibers are able to partially substitute missing extracellular matrix and to stimulate cell proliferation and differentiation in sutures. Therefore, we tested nanofibrous membranes and cryogenically fractionalized nanofibers as potential materials for support of the healing of intestinal anastomoses in a rabbit model. Materials and Methods: We compared cryogenically fractionalized chitosan and PVA nanofibers with chitosan and PVA nanofiber membranes designed for intestine anastomosis healing in a rabbit animal model. The anastomoses were biomechanically and histologically tested. Results: In strong contrast to nanofibrous membranes, the fractionalized nanofibers did show positive effects on the healing of intestinal anastomoses in rabbits. The fractionalized nanofibers were able to reach deep layers that are key to increased mechanical strength of the intestine. Moreover, fractionalized nanofibers led to the formation of collagen-rich 3D tissue significantly exceeding the healing effects of the 2D flat nanofiber membranes. In addition, the fractionalized chitosan nanofibers eliminated peritonitis, significantly stimulated anastomosis healing and led to a higher density of microvessels, in addition to a larger fraction of myofibroblasts and collagen type I and III. Biomechanical tests supported these histological findings. Conclusion: We concluded that the fractionalized chitosan nanofibers led to accelerated healing for rabbit colorectal anastomoses by the targeted stimulation of collagen-producing cells in the intestine, the smooth muscle cells and the fibroblasts. We believe that the collagen-producing cells were stimulated both directly due to the presence of a biocompatible scaffold providing cell adhesion, and indirectly, by a proper stimulation of immunocytes in the suture.


Asunto(s)
Quitosano , Nanofibras , Animales , Conejos , Quitosano/farmacología , Cicatrización de Heridas , Colágeno/farmacología , Intestino Grueso
16.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35745646

RESUMEN

Polycaprolactone nanofibers are used as scaffolds in the field of tissue engineering for tissue regeneration or drug delivery. Polycaprolactone (PCL) is a biodegradable hydrophobic polyester used to obtain implantable nanostructures, which are clinically applicable due to their biological safety. Polydatin (PD), a glycosidic precursor of resveratrol, is known for its antioxidant, antitumor, antiosteoporotic, and bone regeneration activities. We aimed to use the osteogenic capacity of polydatin to create a biomimetic innovative and patented scaffold consisting of PCL-PD for bone tissue engineering. Both osteosarcoma cells (Saos-2) and mesenchymal stem cells (MSCs) were used to test the in vitro cytocompatibility of the PD-PCL scaffold. Reverse-phase (RP) HPLC was used to evaluate the timing release of PD from the PCL-PD nanofibers and the MTT assay, scanning electron microscopy, and alkaline phosphatase (ALP) activity were used to evaluate the proliferation, adhesion, and cellular differentiation in both osteosarcoma and human mesenchymal stem cells (MSCs) seeded on PD-PCL nanofibers. The proliferation of osteosarcoma cells (Saos-2) on the PD-PCL scaffold decreased when compared to cells grown on PLC nanofibers, whereas the proliferation of MSCs was comparable in both PCL and PD-PCL nanofibers. Noteworthy, after 14 days, the ALP activity was higher in both Saos-2 cells and MSCs cultivated on PD-PCL than on empty scaffolds. Moreover, the same cells showed a spindle-shaped morphology after 14 days when grown on PD-PCL as shown by SEM. In conclusion, we provide evidence that nanofibers appropriately coated with PD support the adhesion and promote the osteogenic differentiation of both human osteosarcoma cells and MSCs.

17.
Gels ; 8(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323271

RESUMEN

Dead space after rectal resection in colorectal surgery is an area with a high risk of complications. In this study, our goal was to develop a novel 3D implant based on composite hydrogels enriched with fractionalized nanofibers. We employed, as a novel approach in abdominal surgery, the application of agarose gels functionalized with fractionalized nanofibers on pieces dozens of microns large with a well-preserved nano-substructure. This retained excellent cell accommodation and proliferation, while nanofiber structures in separated islets allowed cells a free migration throughout the gel. We found these low-concentrated fractionalized nanofibers to be a good tool for structural and biomechanical optimization of the 3D hydrogel implants. In addition, this nano-structuralized system can serve as a convenient drug delivery system for a controlled release of encapsulated bioactive substances from the nanofiber core. Thus, we present novel 3D nanofiber-based gels for controlled release, with a possibility to modify both their biomechanical properties and drug release intended for 3D lesions healing after a rectal extirpation, hysterectomy, or pelvic exenteration.

18.
Plants (Basel) ; 11(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35736728

RESUMEN

Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.

19.
Int Orthop ; 35(11): 1733-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21243357

RESUMEN

OBJECTIVE: Improved staging of cartilage degeneration is required, particularly during the early stages. We correlated mechanical properties with histological and macroscopic findings. METHODS: One hundred and twenty cartilage samples were obtained during total knee arthroplasty. Two adjacent plugs were harvested--one for histological classification and one for macroscopic and biomechanical purposes. Dynamic impact testing was performed; normal stress, dissipated energy (∆E), tangent modulus and stiffness were evaluated. RESULTS: Samples were classified according to six categories of the ICRS histological scale. Mechanical characteristics revealing significant differences between the groups (p < 0.01) were specific damping and related absolute ∆E. A significant correlation was found between the macroscopic score and specific damping, as well as absolute and relative ∆E (p < 0.01). A strong relation was revealed between relative ∆E and cartilage thickness (p < 0.001; R (2) = 0.69). CONCLUSIONS: Only ∆E correlated with the condition of the cartilage--the value increased with decreasing quality-and is the most suitable characteristic. This change appears substantial in initial stages of cartilage deterioration.


Asunto(s)
Cartílago Articular/patología , Osteoartritis de la Rodilla/patología , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Fuerza Compresiva , Elasticidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/cirugía , Estrés Mecánico
20.
ACS Omega ; 6(23): 14848-14857, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151066

RESUMEN

The broad-spectrum herbicide, glyphosate, is considered safe for animals because it selectively affects the shikimate pathway that is specific to plants and microorganisms. We sought a previously unknown mechanism to explain the concerns that glyphosate exposure can negatively affect animals, including humans. Computer modeling showed a probable interaction between glyphosate and eukaryotic translation elongation factor 1 subunit alpha 1 (eEF1α1), which was confirmed by microcalorimetry. Only restricted, nondisrupted spermatogenesis in rats was observed after chronic glyphosate treatments (0.7 and 7 mg/L). Cytostatic and antiproliferative effects of glyphosate in GC-1 and SUP-B15 cells were indicated. Meta-analysis of public health data suggested a possible effect of glyphosate use on sperm count. The in silico, in vitro, and in vivo experimental results as well as the metastatistics indicate side effects of chronic glyphosate exposure. Together, these findings indicate that glyphosate delays protein synthesis through an interaction with eEF1α1, thereby suppressing spermatogenesis and cell growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA