Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Sci Technol ; 84(7): 1813-1825, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34662315

RESUMEN

In this study, zinc oxide and silver and copper-doped zinc oxide nanorods were synthesized by a simple template-free precipitation technique. In addition, meso-tetrakis-(4-sulfonatophenyl) porphyrin (TPPS4) was prepared and immobilized on ZnO nanorods (TPPS/ZnO). The synthesized photocatalysts were characterized by various techniques such as X-ray powder diffraction, scanning electron microscopy, UV-visible spectroscopy, diffuse reflectance spectroscopy, and Fourier transform Infrared spectroscopy. The potential of the obtained photocatalysts in the degradation of methylene blue was investigated under UV and visible light irradiation. The results revealed that the photocatalytic activity of TPPS/ZnO was higher than those of the pure ZnO and doped ZnO under visible light irradiation.


Asunto(s)
Óxido de Zinc , Catálisis , Luz , Azul de Metileno , Porfirinas
2.
J Am Chem Soc ; 136(2): 594-7, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24350558

RESUMEN

The photocatalytic reduction of CO2 by water vapor to produce light hydrocarbons was studied over a series of catalysts consisting of variable loading of Ti incorporated in TUD-1 mesoporous silica, either modified by ZnO nanoparticles or isolated Cr-sites. Unexpectedly, the performance of ZnO-Ti-TUD-1 and Cr-Ti-TUD-1 was inferior to the parent Ti-TUD-1. An explanation can be found in experiments on the photocatalytic degradation of a mixture of hydrocarbons (i.e., CH4, C2H4, C2H6, C3H6, and C3H8) under the same illumination conditions. Ti-TUD-1 exhibits the poorest activity in hydrocarbon degradation, while ZnO-Ti-TUD-1 and Cr-Ti-TUD-1 showed very significant degradation rates. This study clearly demonstrates the importance of evaluating hydrocarbon conversion over photocatalysts active in converting CO2 to hydrocarbons (in batch reactors).

3.
Sci Rep ; 14(1): 21502, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277701

RESUMEN

Educational buildings have a large share and impact on urban development. While research shows a significant portion of non-industrial energy consumption in these buildings, obtaining optimal thermal comfort in educational buildings remains one of the main concerns in achieving the grounds to promote students' best performance and efficiency. Extensive research has been done in this field, however, this research presents a new approach to the diverse use of nanotechnology techniques which improve its properties and components in the buildings, aiming to reduce energy consumption and increase thermal comfort. In this paper, thermal comfort and energy consumption are evaluated in a 12-class elementary school located in Shiraz City. Aeropan and nano-Phase change materials (nano-PCMs) is used in the window glass and walls of the studied case. This evaluation presents the simulation and experimental analysis of thermal comfort (PMV) and energy consumption of three classroom alignments in the school building including the Linear-shape (LS), the Integrated Linear-shape (ILS), and the U-shaped (US) alignment. The simulation was performed using EnergyPlus 9.6 software, while the experimental data was collected using TESTO 425 device. The result of this research shows that after applying nano-PCM and Aeropan techniques in window glass and walls, the US alignment has the highest reduction in energy consumption (monthly average of 11.80%) compared to LS and ILS alignments. This alignment includes an energy consumption reduction of 12.03% in the coldest, and, 11.66% in the hottest day of the year in addition to increasing the monthly average thermal comfort of school by the use of nanomaterials.

4.
Heliyon ; 9(12): e22854, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125433

RESUMEN

Photocatalytic ozonation, which combines the effects of lighting and ozonation, has been shown to enhance the decolorization and degradation of organic pollutants in wastewater. Dye solutions with concentrations of 10 ppm for both methylene blue and methyl orange dyes were used. The influence of ozoneation on the performance of photocatalytic activity of TiO2 and ZnO nanoparticles for the removal of organic dyes from aqueous solutions was investigated. To evaluate their efficacy for the removal of methylene blue and methyl orange dyes from aqueous solutions, the photocatalysts were exposed to UV light for 90 min, with ozone supplied either intermittently or continuously by an SDBD cold plasma reactor. The photocatalysts utilized in this study were characterized using SEM and XRD techniques. The degree of color degradation was determined using UV-Vis spectroscopy. The results demonstrate that TiO2 and ZnO nanoparticles exhibit different degrees of photocatalytic activity for the two dyes. The addition of ozone was found to enhance both the color degradation and mineralization rates of the pollutants, with intermittent ozonation proving more effective than continuous ozonation. The most significant color degradation results were obtained using TiO2 nanoparticles with intermittent ozonation for methylene blue dye (97 %) and ZnO nanoparticles with intermittent ozonation for methyl orange dye (40 %). Overall, this study provides evidence that photocatalytic ozonation represents a promising technique for water treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA