Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(4): 897-907.e14, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30078705

RESUMEN

Akt is a critical protein kinase that drives cancer proliferation, modulates metabolism, and is activated by C-terminal phosphorylation. The current structural model for Akt activation by C-terminal phosphorylation has centered on intramolecular interactions between the C-terminal tail and the N lobe of the kinase domain. Here, we employ expressed protein ligation to produce site-specifically phosphorylated forms of purified Akt1 that are well suited for mechanistic analysis. Using biochemical, crystallographic, and cellular approaches, we determine that pSer473-Akt activation is driven by an intramolecular interaction between the C-tail and the pleckstrin homology (PH)-kinase domain linker that relieves PH domain-mediated Akt1 autoinhibition. Moreover, dual phosphorylation at Ser477/Thr479 activates Akt1 through a different allosteric mechanism via an apparent activation loop interaction that reduces autoinhibition by the PH domain and weakens PIP3 affinity. These results provide a new framework for understanding how Akt is controlled in cell signaling and suggest distinct functions for differentially modified Akt forms.


Asunto(s)
Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Células HCT116 , Humanos , Fosforilación , Dominios Homólogos a Pleckstrina , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-akt/química , Serina/química , Transducción de Señal , Treonina/química
2.
Nature ; 612(7941): 795-801, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517601

RESUMEN

The sodium/iodide symporter (NIS) is the essential plasma membrane protein that mediates active iodide (I-) transport into the thyroid gland, the first step in the biosynthesis of the thyroid hormones-the master regulators of intermediary metabolism. NIS couples the inward translocation of I- against its electrochemical gradient to the inward transport of Na+ down its electrochemical gradient1,2. For nearly 50 years before its molecular identification3, NIS was the molecule at the centre of the single most effective internal radiation cancer therapy: radioiodide (131I-) treatment for thyroid cancer2. Mutations in NIS cause congenital hypothyroidism, which must be treated immediately after birth to prevent stunted growth and cognitive deficiency2. Here we report three structures of rat NIS, determined by single-particle cryo-electron microscopy: one with no substrates bound; one with two Na+ and one I- bound; and one with one Na+ and the oxyanion perrhenate bound. Structural analyses, functional characterization and computational studies show the substrate-binding sites and key residues for transport activity. Our results yield insights into how NIS selects, couples and translocates anions-thereby establishing a framework for understanding NIS function-and how it transports different substrates with different stoichiometries and releases substrates from its substrate-binding cavity into the cytosol.


Asunto(s)
Yoduros , Sodio , Simportadores , Animales , Ratas , Microscopía por Crioelectrón , Yoduros/metabolismo , Sodio/metabolismo , Simportadores/química , Simportadores/metabolismo , Simportadores/ultraestructura , Sitios de Unión , Especificidad por Sustrato , Transporte Iónico
3.
Mol Cell ; 66(3): 345-357.e6, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475870

RESUMEN

The HECT E3 ligases ubiquitinate numerous transcription factors and signaling molecules, and their activity must be tightly controlled to prevent cancer, immune disorders, and other diseases. In this study, we have found unexpectedly that peptide linkers tethering WW domains in several HECT family members are key regulatory elements of their catalytic activities. Biochemical, structural, and cellular analyses have revealed that the linkers can lock the HECT domain in an inactive conformation and block the proposed allosteric ubiquitin binding site. Such linker-mediated autoinhibition of the HECT domain can be relieved by linker post-translational modifications, but complete removal of the brake can induce hyperactive autoubiquitination and E3 self destruction. These results clarify the mechanisms of several HECT protein cancer associated mutations and provide a new framework for understanding how HECT ubiquitin ligases must be finely tuned to ensure normal cellular behavior.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regulación Alostérica , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Activación Enzimática , Estabilidad de Enzimas , Células HeLa , Humanos , Modelos Moleculares , Mutación , Ubiquitina-Proteína Ligasas Nedd4 , Fosforilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Represoras/química , Proteínas Represoras/genética , Relación Estructura-Actividad , Transfección , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
4.
J Biol Chem ; 298(4): 101763, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202650

RESUMEN

Voltage-gated sodium channels, NaVs, are responsible for the rapid rise of action potentials in excitable tissues. NaV channel mutations have been implicated in several human genetic diseases, such as hypokalemic periodic paralysis, myotonia, and long-QT and Brugada syndromes. Here, we generated high-affinity anti-NaV nanobodies (Nbs), Nb17 and Nb82, that recognize the NaV1.4 (skeletal muscle) and NaV1.5 (cardiac muscle) channel isoforms. These Nbs were raised in llama (Lama glama) and selected from a phage display library for high affinity to the C-terminal (CT) region of NaV1.4. The Nbs were expressed in Escherichia coli, purified, and biophysically characterized. Development of high-affinity Nbs specifically targeting a given human NaV isoform has been challenging because they usually show undesired crossreactivity for different NaV isoforms. Our results show, however, that Nb17 and Nb82 recognize the CTNaV1.4 or CTNaV1.5 over other CTNav isoforms. Kinetic experiments by biolayer interferometry determined that Nb17 and Nb82 bind to the CTNaV1.4 and CTNaV1.5 with high affinity (KD ∼ 40-60 nM). In addition, as proof of concept, we show that Nb82 could detect NaV1.4 and NaV1.5 channels in mammalian cells and tissues by Western blot. Furthermore, human embryonic kidney cells expressing holo NaV1.5 channels demonstrated a robust FRET-binding efficiency for Nb17 and Nb82. Our work lays the foundation for developing Nbs as anti-NaV reagents to capture NaVs from cell lysates and as molecular visualization agents for NaVs.


Asunto(s)
Anticuerpos de Dominio Único , Canales de Sodio Activados por Voltaje , Animales , Células Cultivadas , Escherichia coli/genética , Humanos , Síndrome de QT Prolongado/metabolismo , Mamíferos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo
5.
Curr Top Microbiol Immunol ; 436: 3-49, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36243838

RESUMEN

This chapter is an introduction to phosphoinositide 3-kinases (PI3K), with class I PI3Ks as the central focus. First, the various PI3K isoforms in class I are presented with emphasis on their overall structure, subunits, subunit constitutive domains, domain-domain interactions, and functional relevance. This structural analysis is followed by a comprehensive history of seminal investigations into PI3K activity. Next, we highlight the divergent roles of the isoforms: PI3Kα, PI3Kß, PI3Kδ, and PI3Kγ. This section details signaling pathways in which these PI3K isoforms are involved, including the key upstream regulators of PI3K activity and some downstream cellular effects. Nodes of the PI3K pathway are also presented. Inhibitors of some isoforms are discussed to give an overview of the basis of some immunotherapies that are being used to target cell signaling. Finally, the chapter ends with a discussion of the dysregulation of PI3Ks in diseases including APDS, asthma, arthritis, and oncogenic mutations.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Biología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/farmacología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Transducción de Señal/fisiología
6.
Proc Natl Acad Sci U S A ; 115(13): E3026-E3035, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531055

RESUMEN

Calmodulin (CaM) regulation of voltage-gated calcium (CaV) channels is a powerful Ca2+ feedback mechanism that adjusts Ca2+ influx, affording rich mechanistic insights into Ca2+ decoding. CaM possesses a dual-lobed architecture, a salient feature of the myriad Ca2+-sensing proteins, where two homologous lobes that recognize similar targets hint at redundant signaling mechanisms. Here, by tethering CaM lobes, we demonstrate that bilobal architecture is obligatory for signaling to CaV channels. With one lobe bound, CaV carboxy tail rearranges itself, resulting in a preinhibited configuration precluded from Ca2+ feedback. Reconstitution of two lobes, even as separate molecules, relieves preinhibition and restores Ca2+ feedback. CaV channels thus detect the coincident binding of two Ca2+-free lobes to promote channel opening, a molecular implementation of a logical NOR operation that processes spatiotemporal Ca2+ signals bifurcated by CaM lobes. Overall, a unified scheme of CaV channel regulation by CaM now emerges, and our findings highlight the versatility of CaM to perform exquisite Ca2+ computations.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Calmodulina/metabolismo , Activación del Canal Iónico/fisiología , Secuencia de Aminoácidos , Animales , Canales de Calcio/química , Calmodulina/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ratas , Homología de Secuencia , Transducción de Señal
7.
Annu Rev Physiol ; 79: 261-289, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28192058

RESUMEN

Active iodide (I-) transport in both the thyroid and some extrathyroidal tissues is mediated by the Na+/I- symporter (NIS). In the thyroid, NIS-mediated I- uptake plays a pivotal role in thyroid hormone (TH) biosynthesis. THs are key during embryonic and postembryonic development and critical for cell metabolism at all stages of life. The molecular characterization of NIS in 1996 and the use of radioactive I- isotopes have led to significant advances in the diagnosis and treatment of thyroid cancer and provide the molecular basis for studies aimed at extending the use of radioiodide treatment in extrathyroidal malignancies. This review focuses on the most recent findings on I- homeostasis and I- transport deficiency-causing NIS mutations, as well as current knowledge of the structure/function properties of NIS and NIS regulatory mechanisms. We also discuss employing NIS as a reporter gene using viral vectors and stem cells in imaging, diagnostic, and therapeutic procedures.


Asunto(s)
Yoduros/metabolismo , Simportadores/metabolismo , Animales , Genes Reporteros/genética , Humanos , Simportadores/genética , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Glándula Tiroides/fisiología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/fisiopatología
8.
Biochemistry ; 59(29): 2751-2759, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32584028

RESUMEN

Farnesyl diphosphate synthase (FPPS) is an isoprenoid chain elongation enzyme that catalyzes the sequential condensation of dimethylallyl diphosphate (C5) with isopentenyl diphosphate (IPP; C5) and the resulting geranyl diphosphate (GPP; C10) with another molecule of IPP, eventually producing farnesyl diphosphate (FPP; C15), which is a precursor for the biosynthesis of a vast majority of isoprenoids. Previous studies of FPPS have highlighted the importance of the structure around the hydrophobic chain elongation path in determining product specificity. To investigate what structural features define the final chain length of the product in FPPS from Leishmania major, we designed and expressed six mutants of LmFPPS by replacing small amino acids around the binding pocket with bulky residues. Using enzymatic assays, binding kinetics, and crystallographic studies, we analyzed the effects of these mutations on the activity and product specificity of FPPS. Our results revealed that replacement of Thr-164 with tryptophan and phenylalanine completely abolished the activity of FPPS. Intriguingly, the T164Y substitution displayed dual product specificity and produced a mixture GPP and FPP as final products, with an activity for FPP synthesis that was lower than that of the wild-type enzyme. These data indicate that Thr-164 is a potential regulator of product specificity.


Asunto(s)
Geraniltranstransferasa/metabolismo , Leishmania major/enzimología , Sitios de Unión , Cristalografía por Rayos X , Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferasa/química , Hemiterpenos/metabolismo , Humanos , Leishmania major/química , Leishmania major/metabolismo , Leishmaniasis Cutánea/parasitología , Modelos Moleculares , Compuestos Organofosforados/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Conformación Proteica , Sesquiterpenos/metabolismo , Especificidad por Sustrato
9.
BMC Evol Biol ; 19(1): 146, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324143

RESUMEN

BACKGROUND: Antioxidative enzymes contribute to a parasite's ability to counteract the host's intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite's life history? RESULTS: Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. CONCLUSIONS: PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed.


Asunto(s)
Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Parásitos/enzimología , Fotosíntesis , Secuencia de Aminoácidos , Animales , Ascorbato Peroxidasas/química , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/aislamiento & purificación , Peróxido de Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Parásitos/genética , Filogenia , Homología Estructural de Proteína , Fracciones Subcelulares/metabolismo
10.
Glycobiology ; 29(5): 419-430, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30834446

RESUMEN

Galectins, highly conserved ß-galactoside-binding lectins, have diverse regulatory roles in development and immune homeostasis and can mediate protective functions during microbial infection. In recent years, the role of galectins in viral infection has generated considerable interest. Studies on highly pathogenic viruses have provided invaluable insight into the participation of galectins in various stages of viral infection, including attachment and entry. Detailed mechanistic and structural aspects of these processes remain undetermined. To address some of these gaps in knowledge, we used Zebrafish as a model system to examine the role of galectins in infection by infectious hematopoietic necrosis virus (IHNV), a rhabdovirus that is responsible for significant losses in both farmed and wild salmonid fish. Like other rhabdoviruses, IHNV is characterized by an envelope consisting of trimers of a glycoprotein that display multiple N-linked oligosaccharides and play an integral role in viral infection by mediating the virus attachment and fusion. Zebrafish's proto-typical galectin Drgal1-L2 and the chimeric-type galectin Drgal3-L1 interact directly with the glycosylated envelope of IHNV, and significantly reduce viral attachment. In this study, we report the structure of the complex of Drgal1-L2 with N-acetyl-d-lactosamine at 2.0 Å resolution. To gain structural insight into the inhibitory effect of these galectins on IHNV attachment to the zebrafish epithelial cells, we modeled Drgal3-L1 based on human galectin-3, as well as, the ectodomain of the IHNV glycoprotein. These models suggest mechanisms for which the binding of these galectins to the IHNV glycoprotein hinders with different potencies the viral attachment required for infection.


Asunto(s)
Galectinas/química , Galectinas/metabolismo , Glicoproteínas/química , Virus de la Necrosis Hematopoyética Infecciosa/química , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Glicoproteínas/metabolismo , Virus de la Necrosis Hematopoyética Infecciosa/metabolismo , Modelos Moleculares , Alineación de Secuencia , Pez Cebra
11.
Proc Natl Acad Sci U S A ; 113(37): E5379-88, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27562170

RESUMEN

The sodium/iodide symporter (NIS) mediates active I(-) transport in the thyroid-the first step in thyroid hormone biosynthesis-with a 2 Na(+): 1 I(-) stoichiometry. The two Na(+) binding sites (Na1 and Na2) and the I(-) binding site interact allosterically: when Na(+) binds to a Na(+) site, the affinity of NIS for the other Na(+) and for I(-) increases significantly. In all Na(+)-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na(+) ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues-S66, D191, Q194, and Q263-are also involved in Na(+) coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I(-) These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance.


Asunto(s)
Yodo/metabolismo , Sodio/metabolismo , Simportadores/metabolismo , Glándula Tiroides/metabolismo , Aminoácidos/química , Aminoácidos/genética , Sitios de Unión , Humanos , Yodo/química , Transporte Iónico/genética , Iones/química , Ligandos , Modelos Moleculares , Simportadores/genética , Glándula Tiroides/química , Hormonas Tiroideas/biosíntesis , Hormonas Tiroideas/metabolismo
12.
Molecules ; 24(3)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704096

RESUMEN

Advances in synchrotron technology are changing the landscape of macromolecular crystallography. The two recently opened beamlines at NSLS-II-AMX and FMX-deliver high-flux microfocus beams that open new possibilities for crystallographic data collection. They are equipped with state-of-the-art experimental stations and automation to allow data collection on previously intractable crystals. Optimized data collection strategies allow users to tailor crystal positioning to optimally distribute the X-ray dose over its volume. Vector data collection allows the user to define a linear trajectory along a well diffracting volume of the crystal and perform rotational data collection while moving along the vector. This is particularly well suited to long, thin crystals. We describe vector data collection of three proteins-Akt1, PI3Kα, and CDP-Chase-to demonstrate its application and utility. For smaller crystals, we describe two methods for multicrystal data collection in a single loop, either manually selecting multiple centers (using H108A-PHM as an example), or "raster-collect", a more automated approach for a larger number of crystals (using CDP-Chase as an example).


Asunto(s)
Cristalografía por Rayos X , Modelos Moleculares , Proteínas/química , Cristalografía por Rayos X/métodos , Fosfatidilinositol 3-Quinasas/química , Conformación Proteica , Pirofosfatasas/química
13.
J Biol Chem ; 292(33): 13541-13550, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28676499

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) are ubiquitous lipid kinases that activate signaling cascades controlling cell survival, proliferation, protein synthesis, and vesicle trafficking. PI3Ks have dual kinase specificity: a lipid kinase activity that phosphorylates the 3'-hydroxyl of phosphoinositides and a protein-kinase activity that includes autophosphorylation. Despite the wealth of biochemical and structural information on PI3Kα, little is known about the identity and roles of individual active-site residues in catalysis. To close this gap, we explored the roles of residues of the catalytic domain and the regulatory subunit of human PI3Kα in lipid and protein phosphorylation. Using site-directed mutagenesis, kinetic assays, and quantitative mass spectrometry, we precisely mapped key residues involved in substrate recognition and catalysis by PI3Kα. Our results revealed that Lys-776, located in the P-loop of PI3Kα, is essential for the recognition of lipid and ATP substrates and also plays an important role in PI3Kα autophosphorylation. Replacement of the residues His-936 and His-917 in the activation and catalytic loops, respectively, with alanine dramatically changed PI3Kα kinetics. Although H936A inactivated the lipid kinase activity without affecting autophosphorylation, H917A abolished both the lipid and protein kinase activities of PI3Kα. On the basis of these kinetic and structural analyses, we propose possible mechanistic roles of these critical residues in PI3Kα catalysis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/química , Sustitución de Aminoácidos , Sitios de Unión , Biocatálisis , Dominio Catalítico , Fosfatidilinositol 3-Quinasa Clase I , Fosfatidilinositol 3-Quinasa Clase Ia , Histidina/química , Histidina/metabolismo , Humanos , Cinética , Lisina/química , Lisina/metabolismo , Conformación Molecular , Mutagénesis Sitio-Dirigida , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 4,5-Difosfato/química , Fosforilación , Mutación Puntual , Conformación Proteica , Multimerización de Proteína
14.
Adv Funct Mater ; 28(41)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34531709

RESUMEN

Collagen-rich tissues in the cornea exhibit unique and highly organized extracellular matrix ultrastructures, which contribute to its high load-bearing capacity and light transmittance. Corneal collagen fibrils are controlled during development by small leucine-rich proteoglycans (SLRPs) that regulate the fibril diameter and spacing in order to achieve the unique optical transparency. Cyclodextrins (CDs) of varying size and chemical functionality for their ability to regulate collagen assembly during vitrification process are screened in order to create biosynthetic materials that mimic the native cornea structure. Addition of ßCD to collagen vitrigels produces materials with aligned fibers and lamellae similar to native cornea, resulting in mechanically robust and transparent materials. Biochemistry analysis revealed that CD interacts with hydrophobic amino acids in collagen to influence assembly and fibril organization. To translate the self-assembled collagen materials for cornea reconstruction, custom molds for gelation and vitrification are engineered to create ßCD/Col implants with curvature matching that of the cornea. Acellular ßCD/Col materials are implanted in a rabbit partial keratoplasty model with interrupted sutures. The implants demonstrate tissue integration and support re-epithelialization. Therefore, the addition of CD molecules regulates collagen self-assembly and provides a simple process to engineer corneal mimetic substitutes with advanced structural and functional properties.

15.
PLoS Pathog ; 11(4): e1004839, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25884716

RESUMEN

Survival of M. tuberculosis in host macrophages requires the eukaryotic-type protein kinase G, PknG, but the underlying mechanism has remained unknown. Here, we show that PknG is an integral component of a novel redox homeostatic system, RHOCS, which includes the ribosomal protein L13 and RenU, a Nudix hydrolase encoded by a gene adjacent to pknG. Studies in M. smegmatis showed that PknG expression is uniquely induced by NADH, which plays a key role in metabolism and redox homeostasis. In vitro, RenU hydrolyses FAD, ADP-ribose and NADH, but not NAD+. Absence of RHOCS activities in vivo causes NADH and FAD accumulation, and increased susceptibility to oxidative stress. We show that PknG phosphorylates L13 and promotes its cytoplasmic association with RenU, and the phosphorylated L13 accelerates the RenU-catalyzed NADH hydrolysis. Importantly, interruption of RHOCS leads to impaired mycobacterial biofilms and reduced survival of M. tuberculosis in macrophages. Thus, RHOCS represents a checkpoint in the developmental program required for mycobacterial growth in these environments.


Asunto(s)
Biopelículas , Homeostasis/fisiología , Macrófagos/microbiología , Mycobacterium smegmatis/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Bacterianas/metabolismo , Humanos , Oxidación-Reducción
16.
Bioorg Med Chem ; 25(4): 1481-1486, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28129991

RESUMEN

PIK3CA, the gene that encodes the catalytic subunit of phosphatidylinositol 3-kinase α (PI3Kα), is frequently mutated in breast and other types of cancer. A specific inhibitor that targets the mutant forms of PI3Kα could maximize treatment efficiency while minimizing side-effects. Herein we describe the identification of novel binding pockets that may provide an opportunity for the design of mutant selective inhibitors. Using a fragment-based approach, we screened a library of 352 fragments (MW<300Da) for binding to PI3Kα by X-ray crystallography. Five novel binding pockets were identified, each providing potential opportunities for inhibitor design. Of particular interest was a binding pocket near Glu542, which is located in one of the two most frequently mutated domains.


Asunto(s)
Sitio Alostérico , Diseño de Fármacos , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Sitio Alostérico/efectos de los fármacos , Sitio Alostérico/genética , Fosfatidilinositol 3-Quinasa Clase I , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Proteínas Mutantes/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
17.
J Biol Chem ; 290(9): 5707-24, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25568328

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) has been shown to alter its ionic selectivity profile in a time- and agonist-dependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-D-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-of-function substitutions within the TRPV1 pore turret (N628P and S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss-of-function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin-evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity.


Asunto(s)
Cationes/farmacocinética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Canales Catiónicos TRPV/química , Animales , Benzoxazoles/farmacocinética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Transporte Biológico/fisiología , Capsaicina/farmacología , Diterpenos/farmacología , Colorantes Fluorescentes/farmacocinética , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Meglumina/farmacocinética , Ratones , Modelos Moleculares , Mutación Missense , Permeabilidad/efectos de los fármacos , Compuestos de Quinolinio/farmacocinética , Ratas , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/fisiología
18.
J Bioenerg Biomembr ; 48(6): 557-567, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27683242

RESUMEN

Mycobacterium tuberculosis represents one of the world's most devastating infectious agents - with one third of the world's population infected and 1.5 million people dying each year from this deadly pathogen. As part of an effort to identify targets for therapeutic intervention, we carried out the kinetic characterization of the product of gene rv1700 of M. tuberculosis. Based on its sequence and its structure, the protein had been tentatively identified as a pyrophosphohydrolase specific for adenosine diphosphate ribose (ADPR), a compound involved in various pathways including oxidative stress response and tellurite resistance. In this work we carry out a kinetic, mutational and structural investigation of the enzyme, which provides a full characterization of this Mt-ADPRase. Optimal catalytic rates were achieved at alkaline pH (7.5-8.5) with either 0.5-1 mM Mg2+ or 0.02-1 mM Mn2+. K m and k cat values for hydrolysis of ADPR with Mg2+ ions are 200 ± 19 µM and 14.4 ± 0.4 s-1, and with Mn2+ ions are 554 ± 64 µM and 28.9 ± 1.4 s-1. Four residues proposed to be important in the catalytic mechanism of the enzyme were individually mutated and the kinetics of the mutant enzymes were characterized. In the four cases, the K m increased only slightly (2- to 3-fold) but the k cat decreased significantly (300- to 1900-fold), confirming the participation of these residues in catalysis. An analysis of the sequence and structure conservation patterns in Nudix ADPRases permits an unambiguous identification of members of the family and provides insight into residues involved in catalysis and their participation in substrate recognition in the Mt-ADPRase.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Mycobacterium tuberculosis/enzimología , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Hidrolasas/metabolismo , Cinética , Mutación , Mycobacterium tuberculosis/genética , Pirofosfatasas/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
19.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 802-10, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598749

RESUMEN

Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Šare reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca(2+) ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg(2+) ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS-46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.


Asunto(s)
Difosfonatos/metabolismo , Difosfonatos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Geraniltranstransferasa/metabolismo , Leishmania major/enzimología , Nitrógeno , Termodinámica , Animales , Cristalización , Cristalografía por Rayos X , Difosfonatos/uso terapéutico , Geraniltranstransferasa/química , Humanos , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/prevención & control , Unión Proteica/efectos de los fármacos , Conformación Proteica
20.
FASEB J ; 27(8): 3229-38, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23650190

RESUMEN

The Na(+)/I(-) symporter (NIS) is a plasma membrane glycoprotein that mediates active I(-) transport in the thyroid, the first step in the biosynthesis of the iodine-containing thyroid hormones T3 and T4. Several NIS mutants have been identified as a cause of congenital I(-) transport defect (ITD), and their investigation has yielded valuable mechanistic information on NIS. Here we report a thorough characterization of the ITD-causing NIS mutation in which the sixth intracellular loop residues 439-443 are missing. This mutant protein was intracellularly retained, incompletely glycosylated, and intrinsically inactive. Engineering 5 Ala at positions 439-443 partially recovered cell surface targeting and activity (∼15%). Strikingly, NIS with the sequence 439-AANAA-443, in which Asn was restored at position 441, was targeted to the plasma membrane and exhibited ∼95% the transport activity of WT NIS. Based on our NIS homology model, we propose that the side chain of N441, a residue conserved throughout most of the SLC5 family, interacts with the main chain amino group of G444, capping the α-helix of transmembrane segment XII and thus stabilizing the structure of the molecule. Our data provide insight into a critical interhelical interaction required for NIS folding and activity.


Asunto(s)
Asparagina/metabolismo , Pliegue de Proteína , Simportadores/química , Simportadores/metabolismo , Secuencia de Aminoácidos , Animales , Asparagina/genética , Sitios de Unión/genética , Transporte Biológico/genética , Células COS , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Immunoblotting , Yodo/metabolismo , Microscopía Confocal , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Simportadores/genética , Vesículas Transportadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA