Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Immunol ; 357: 104198, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32877756

RESUMEN

Calcium plays an important role in regulating cell physiology and immune responses to various pathogens. Our recent work has highlighted the crucial role for calcium homeostasis in dendritic cells and macrophages during various infections. Here we investigated the effect of calcium homeostasis in regulating T cell activation and function during mycobacterial infection. Results show that calcium homeostasis had varied effects in regulating T cell activation and function during mycobacterial infection. This included regulation of the expression of co-stimulatory molecules, cytokine profiles and effector function. A net negative role for Voltage Gated Calcium Channel (VGCC) was observed. Inhibiting VGCC in mycobacteria primed T cells induced increased production of pro-inflammatory cytokines and an increased effector phenotype. Infected macrophages when incubated with VGCC inhibited T cells, induced increased expression of co-stimulatory molecule expression on macrophages, increased the production of pro-inflammatory cytokines and increased autophagy and apoptosis. This collectively led to reduced survival of mycobacteria inside macrophages. The data point towards a fine regulation of protective responses by routes of calcium influx and release that mediate pathogen survival or clearance.


Asunto(s)
Calcio/metabolismo , Infecciones por Mycobacterium/inmunología , Linfocitos T/metabolismo , Animales , Apoptosis/inmunología , Autofagia/inmunología , Calcio/inmunología , Canales de Calcio/metabolismo , Citocinas/inmunología , Femenino , Homeostasis , Interleucina-2/metabolismo , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Mycobacterium/patogenicidad , Mycobacterium tuberculosis/inmunología , Linfocitos T/fisiología , Tuberculosis/inmunología
2.
Int Rev Cell Mol Biol ; 386: 223-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38782500

RESUMEN

Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.


Asunto(s)
Inmunidad Innata , Inflamación , Mitocondrias , Neoplasias , Transducción de Señal , Humanos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Animales , Mitocondrias/metabolismo , Inflamación/patología , Inflamación/metabolismo , Inflamación/inmunología , Resistencia a Antineoplásicos , Evasión Inmune , Microambiente Tumoral/inmunología
3.
Microbes Infect ; 26(3): 105271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38036036

RESUMEN

Microorganisms present in the gut modulate host defence responses against infections in order to maintain immune homeostasis. This host-microbe crosstalk is regulated by gut metabolites. Butyrate is one such small chain fatty acid produced by gut microbes upon fermentation that has the potential to influence immune responses. Here we investigated the role of butyrate in macrophages during mycobacterial infection. Results demonstrate that butyrate significantly suppresses the growth kinetics of mycobacteria in culture medium as well as inhibits mycobacterial survival inside macrophages. Interestingly, butyrate alters the pentose phosphate pathway by inducing higher expression of Glucose-6-Phosphate Dehydrogenase (G6PDH) resulting in a higher oxidative burst via decreased Sod-2 and increased Nox-2 (NADPH oxidase-2) expression. Butyrate-induced G6PDH also mediated a decrease in mitochondrial membrane potential. This in turn lead to an induction of apoptosis as measured by lower expression of the anti-apoptotic protein Bcl-2 and a higher release of Cytochrome C as a result of induction of apoptosis. These results indicate that butyrate alters the metabolic status of macrophages and induces protective immune responses against mycobacterial infection.


Asunto(s)
Butiratos , Infecciones por Mycobacterium , Humanos , Butiratos/farmacología , Glucosafosfato Deshidrogenasa/metabolismo , Estallido Respiratorio , Macrófagos/microbiología , Infecciones por Mycobacterium/metabolismo , Apoptosis
4.
Int J Biol Macromol ; 271(Pt 2): 132714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815937

RESUMEN

OBJECTIVES: The study aimed to identify a quantitative signature of circulating small non-coding RNAs (sncRNAs) as a biomarker for pulmonary tuberculosis disease (active-TB/ATB) and explore their regulatory roles in host-pathogen interactions and disease progression. METHODS: We conducted a cross-sectional study recruiting subjects diagnosed with active-TB (drug-sensitive and drug-resistant) and healthy controls. Sera samples were collected and utilized for preparing small RNA libraries. Quantitative patterns of circulating sncRNAs (miRNAs, piRNAs and tRFs) were identified via high-throughput sequencing and DeSeq2 analysis and validated in independent active-TB cohorts. Functional knockdown for two selected miRNAs were also performed. RESULTS: A diagnostic signature of four sncRNAs for both drug-sensitive and drug-resistant active-TB cases was validated, exhibiting an AUC of 0.96 (95% CI: 0.937-0.996, p < 0.001) with 86.7% sensitivity (95% CI: 0.775-0.932) and 91.7% specificity (95% CI: 0.730-0.990) in ROC analysis. Functional knockdown demonstrated regulatory roles of hsa-miR-223-5p and hsa-miR-10b-5p in Mycobacterium tuberculosis (Mtb) growth and pro-inflammatory cytokine expression (IL-6 and IL-8). CONCLUSION: The study identified a diagnostic tool utilizing a signature of four sncRNAs with high specificity and sensitivity, enhancing our understanding of sncRNAs as ATB diagnostic biomarker. Additionally, hsa-miR-223-5p and hsa-miR-10b-5p demonstrated potential roles in Mtb pathogenesis and host-response to infection.


Asunto(s)
Biomarcadores , Humanos , Biomarcadores/sangre , Femenino , Masculino , Adulto , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/microbiología , Interacciones Huésped-Patógeno/genética , ARN Pequeño no Traducido/genética , Persona de Mediana Edad , MicroARNs/genética , MicroARNs/sangre , Tuberculosis/diagnóstico , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/sangre , Estudios Transversales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Estudios de Casos y Controles , Curva ROC , Mycobacterium tuberculosis/genética
5.
Prog Mol Biol Transl Sci ; 194: 219-267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36631194

RESUMEN

Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Células Asesinas Naturales/metabolismo , Receptores Quiméricos de Antígenos/metabolismo
6.
Prog Mol Biol Transl Sci ; 194: 269-310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36631195

RESUMEN

Cancer is now the leading cause of mortality across the world. Inflammatory immune cells are functionally important in the genesis and progression of tumors, as demonstrated by their presence in human tumors. Numerous research has recently been conducted to determine if the innate and adaptive immune systems' cytotoxic cells can inhibit tumor growth and spread. Majority of cancers, when growing into identifiable tumors use multiple strategies to elude immune monitoring by lowering tumor immunity. Immunological suppression in the tumor microenvironment is achieved through interfering with antigen-presenting cells and effector T cells. Treatment of cancer requires managing both the tumor as well as tumor microenvironment (TME). Most patients will not be able to gain benefits from immunotherapy because of the immunosuppressive tumor microenvironment. The actions of many stromal myeloid and lymphoid cells are regulated to suppress tumor-specific T lymphocytes. These frequently exhibit inducible suppressive processes brought on by the same anti-tumor inflammatory response the immunotherapy aims to produce. Therefore, a deeper comprehensive understanding of how the immunosuppressive environment arises and endures is essential. Here in this chapter, we will talk about how immune cells, particularly macrophages and lymphocytes, and their receptors affect the ability of tumors to mount an immune response.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Linfocitos/patología , Inmunoterapia , Macrófagos/patología , Inmunidad , Microambiente Tumoral
7.
Microbes Infect ; 25(6): 105126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36931492

RESUMEN

Mycobacterium tuberculosis attenuates many defence responses from alveolar macrophages to create a niche at sites of infection in the human lung. Levels of Heat Shock Proteins have been reported to increase many folds in the serum of active TB patients than in latently infected individuals. Here we investigated the regulation of key defence responses by HSPs during mycobacterial infection. We show that infection of macrophages with M. bovis BCG induces higher expression of HSP-27 and HSP-70. Inhibiting HSP-27 and HSP-70 prior to mycobacterial infection leads to a significant decrease in mycobacterial growth inside macrophages. Further, inhibiting HSPs resulted in a significant increase in intracellular oxidative burst levels. This was accompanied by an increase in the levels of T cell activation molecules CD40 and IL-12 receptor and a concomitant decrease in the levels of T cell inhibitory molecules PD-L1 and IL-10 receptor. Furthermore, inhibiting HSPs significantly increased the expression of key proteins in the autophagy pathway along with increased activation of pro-inflammatory promoting transcription factors NF-κB and p-CREB. Interestingly, we also show that both HSP-27 and HSP-70 are associated with anti-apoptotic proteins Bcl-2 and Beclin-1. These results point towards a suppressive role for host HSP-27 and HSP-70 during mycobacterial infection.


Asunto(s)
Proteínas de Choque Térmico HSP27 , Proteínas HSP70 de Choque Térmico , Macrófagos , Infecciones por Mycobacterium , Mycobacterium tuberculosis , Humanos , Proteínas de Choque Térmico/metabolismo , Macrófagos/microbiología , Infecciones por Mycobacterium/metabolismo , Mycobacterium tuberculosis/patogenicidad , Linfocitos T , Proteínas HSP70 de Choque Térmico/inmunología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP27/inmunología , Proteínas de Choque Térmico HSP27/metabolismo
8.
PLoS One ; 18(9): e0283448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37773921

RESUMEN

Post translational modifications (PTMs) are exploited by various pathogens in order to escape host immune responses. SUMOylation is one of the PTMs which is involved in regulation of a variety of cellular responses. However, the effects of host SUMOylation on pathogenic bacteria largely remain elusive. We, therefore, investigated the role of SUMOylation in regulating defense responses in dendritic cells (DCs) during mycobacterial infection. Dendritic Cells of female BALB/c mice and THP-1 macrophages were used. Western blotting was performed to measure the expression of level of SUMO1, pSTAT1, pp38, pERK, Beclin-1, LC3, Bax and Cytochrome C. For bacterial burden confocal microscopy and CFU (Colony Forming Unit) were used. Flow cytometry was used for ROS and co-stimulatory molecules measurement. Cytokine level were measured using ELISA. We show that stimulation of Bone Marrow Derived Dendritic Cells (BMDCs) with mycobacterial antigen Rv3416 or live infection with Mycobacterium bovis BCG increases the SUMOylation of host proteins. Inhibition of SUMOylation significantly decreased intracellular bacterial loads in DCs. Additionally, inhibiting SUMOylation, induces protective immune responses by increasing oxidative burst, pro-inflammatory cytokine expression and surface expression of T cell co-stimulatory molecules, and activation of pSTAT1 and Mitogen Activated Protein Kinases (MAPK) proteins- pp38 and pERK. SUMOylation inhibition also increased apoptosis and autophagy in BMDCs. Intriguingly, mycobacteria increased SUMOylation of many of the above molecules. Furthermore, inhibiting SUMOylation in DCs primed T cells that in turn attenuated bacterial burden in infected macrophages. These findings demonstrate that SUMOylation pathway is exploited by mycobacteria to thwart protective host immune responses.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium bovis , Animales , Ratones , Femenino , Sumoilación , Citocinas/metabolismo , Células Dendríticas
9.
Front Pharmacol ; 14: 940129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234710

RESUMEN

Pathogen-associated molecular patterns (PAMPs) like bacterial cell wall components and viral nucleic acids are known ligands of innate inflammatory receptors that trigger multiple inflammatory pathways that may result in acute inflammation and oxidative stress-driven tissue and organ toxicity. When dysregulated, this inflammation may lead to acute toxicity and multiorgan failure. Inflammatory events are often driven by high energy demands and macromolecular biosynthesis. Therefore, we proposed that targeting the metabolism of lipopolysaccharide (LPS)-driven inflammatory events, using an energy restriction approach, can be an effective strategy to prevent the acute or chronic detrimental effects of accidental or seasonal bacterial and other pathogenic exposures. In the present study, we investigated the potential of energy restriction mimetic agent (ERMA) 2-deoxy-D-glucose (2-DG) in targeting the metabolism of inflammatory events during LPS-elicited acute inflammatory response. Mice fed with 2-DG as a dietary component in drinking water showed reduced LPS-driven inflammatory processes. Dietary 2-DG reduced LPS-induced lung endothelial damage and oxidative stress by strengthening the antioxidant defense system and limiting the activation and expression of inflammatory proteins, viz., P-Stat-3, NfκΒ, and MAP kinases. This was accompanied by decreased TNF, IL-1ß, and IL-6 levels in peripheral blood and bronchoalveolar lavage fluid (BALF). 2-DG also reduced the infiltration of PMNCs (polymorphonuclear cells) in inflamed tissues. Altered glycolysis and improved mitochondrial activity in 2-DG-treated RAW 264.7 macrophage cells suggested possible impairment of macrophage metabolism and, therefore, activation in macrophages. Taken together, the present study suggests that inclusion of glycolytic inhibitor 2-DG as a part of the diet can be helpful in preventing the severity and poor prognosis associated with inflammatory events during bacterial and other pathogenic exposures.

10.
Biomol Concepts ; 12(1): 94-109, 2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34304400

RESUMEN

We previously reported that M. tb on its own as well as together with HIV inhibits macrophage apoptosis by upregulating the expression of Bcl2 and Inhibitor of Apoptosis (IAP). In addition, recent reports from our lab showed that stimulation of either macrophages or BMDCs results in the significant upregulation of Bcl2. In this report, we delineate the role of Bcl2 in mediating defense responses from dendritic cells (BMDCs) during mycobacterial infection. Inhibiting Bcl2 led to a significant decrease in intracellular bacterial burden in BMDCs. To further characterize the role of Bcl2 in modulating defense responses, we inhibited Bcl2 in BMDCs as well as human PBMCs to monitor their activation and functional status in response to mycobacterial infection and stimulation with M. tb antigen Rv3416. Inhibiting Bcl2 generated protective responses including increased expression of co-stimulatory molecules, oxidative burst, pro-inflammatory cytokine expression and autophagy. Finally, co-culturing human PBMCs and BMDCs with antigen-primed T cells increased their proliferation, activation and effector function. These results point towards a critical role for Bcl2 in regulating BMDCs defense responses to mycobacterial infection.


Asunto(s)
Células Dendríticas/inmunología , Inmunidad , Macrófagos/inmunología , Infecciones por Mycobacterium/inmunología , Mycobacterium bovis/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis , Autofagia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Células Dendríticas/patología , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Infecciones por Mycobacterium/metabolismo , Infecciones por Mycobacterium/microbiología , Infecciones por Mycobacterium/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética
11.
Biomol Concepts ; 11(1): 230-239, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33726488

RESUMEN

Staphylococcus aureus (S. aureus) is a gram-positive bacteria, which causes various fatal respiratory infections including pneumonia. The emergence of Methicillin-Resistance Staphylococcus aureus (MRSA) demands a thorough understanding of host-pathogen interactions. Here we report the role of calcium in regulating defence responses of S. aureus in macrophages. Regulating calcium fluxes in cells by different routes differentially governs the expression of T cell costimulatory molecule CD80 and Th1 promoting IL-12 receptor. Inhibiting calcium influx from extracellular medium increased expression of IFN-γ and IL-10 while blocking calcium release from the intracellular stores inhibited TGF-ß levels. Blocking voltage-gated calcium channels (VGCC) inhibited the expression of multiple cytokines. While VGCC regulated the expression of apoptosis protein Bax, extracellular calcium-regulated the expression of Cytochrome-C. Similarly, VGCC regulated the expression of autophagy initiator Beclin-1. Blocking VGCC or calcium release from intracellular stores promoted phagosome-lysosome fusion, while activating VGCC inhibited phagosomelysosome fusion. Finally, calcium homeostasis regulated intracellular growth of Staphylococcus, although using different mechanisms. While blocking extracellular calcium influx seems to rely on IFN-γ and IL-12Rß receptor mediated reduction in bacterial survival, blocking either intracellular calcium release or via VGCC route seem to rely on enhanced autophagy mediated reduction of intracellular bacterial survival. These results point to fine-tuning of defence responses by routes of calcium homeostasis.


Asunto(s)
Calcio/metabolismo , Macrófagos/metabolismo , Sustancias Protectoras/metabolismo , Staphylococcus aureus/crecimiento & desarrollo , Animales , Células Cultivadas , Citocinas/análisis , Citocinas/biosíntesis , Homeostasis , Ratones
12.
Cancer Growth Metastasis ; 8: 25-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26279628

RESUMEN

The innate immune system is an integral component of the inflammatory response to pathophysiological stimuli. Toll-like receptors (TLRs) and inflammasomes are the major sensors and pattern recognition receptors (PRRs) of the innate immune system that activate stimulus (signal)-specific pro-inflammatory responses. Chronic activation of PRRs has been found to be associated with the aggressiveness of various cancers and poor prognosis. Involvement of PRRs was earlier considered to be limited to infection- and injury-driven carcinogenesis, where they are activated by pathogenic ligands. With the recognition of damage-associated molecular patterns (DAMPs) as ligands of PRRs, the role of PRRs in carcinogenesis has also been implicated in other non-pathogen-driven neoplasms. Dying (apoptotic or necrotic) cells shed a plethora of DAMPs causing persistent activation of PRRs, leading to chronic inflammation and carcinogenesis. Such chronic activation of TLRs promotes tumor cell proliferation and enhances tumor cell invasion and metastasis by regulating pro-inflammatory cytokines, metalloproteinases, and integrins. Due to the decisive role of PRRs in carcinogenesis, targeting PRRs appears to be an effective cancer-preventive strategy. This review provides a brief account on the association of PRRs with various cancers and their role in carcinogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA