Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(9): 4831-4844, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38381614

RESUMEN

The hydrolytic susceptibility of sulfobetaine-siloxane surfactants is investigated by comparison of a homologous series in this subclass of surfactants (R-(CH2)3N+(Me)2(CH2)3SO3-; R = (Me3SiO)3Si-, (Me3SiO)2Si(Me)-, (Me2SiO)3-Si(Me)-) with an analogue series of oxyethylene-siloxane surfactants (R-(CH2)3(OCH2CH2)10.2OH; R = (Me3SiO)3Si-, (Me3SiO)2Si(Me)-, (Me2SiO)3-Si(Me)-). Nuclear magnetic resonance (NMR) monitoring of these surfactants in an aqueous solution shows that the presence of the sulfobetaine head structure greatly enhances the hydrolysis rate of the siloxane tail as compared with oxyethylene-siloxane analogue control experiments. This sulfobetaine effect is confirmed by adding a model compound, (Me)3N+(CH2)3SO3-, to the oxyethylene-siloxane surfactants and observing the large hydrolysis enhancement. Measurements of pH indicate the sulfobetaine presence greatly enhances acidity, but rigorous analysis could discover no source of acid other than the presence of the sulfobetaine structure. Titration measurements confirmed the presence of a tightly bound hydration layer of 4-7 water molecules per sulfobetaine group. It is speculated that the source of acidity may originate from an aqueous exclusion zone nucleated by the hydrated sulfobetaine at the interface of a sulfobetaine-siloxane surfactant bilayer aggregate. Hydrolysis prevention is investigated by addition of a pH 7 phosphate buffer, of an alkyl polyglycoside cosurfactant, and of a combination of both, with a finding of very significant but not complete suppression of the hydrolysis.

2.
Molecules ; 22(9)2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28930186

RESUMEN

Iron-based CO2 catalysts have shown promise as a viable route to the production of olefins from CO2 and H2 gas. However, these catalysts can suffer from low conversion and high methane selectivity, as well as being particularly vulnerable to water produced during the reaction. In an effort to improve both the activity and durability of iron-based catalysts on an alumina support, copper (10-30%) has been added to the catalyst matrix. In this paper, the effects of copper addition on the catalyst activity and morphology are examined. The addition of 10% copper significantly increases the CO2 conversion, and decreases methane and carbon monoxide selectivity, without significantly altering the crystallinity and structure of the catalyst itself. The FeCu/K catalysts form an inverse spinel crystal phase that is independent of copper content and a metallic phase that increases in abundance with copper loading (>10% Cu). At higher loadings, copper separates from the iron oxide phase and produces metallic copper as shown by SEM-EDS. An addition of copper appears to increase the rate of the Fischer-Tropsch reaction step, as shown by modeling of the chemical kinetics and the inter- and intra-particle transport of mass and energy.


Asunto(s)
Alquenos/síntesis química , Dióxido de Carbono/química , Cobre/química , Hierro/química , Óxido de Aluminio/química , Monóxido de Carbono/química , Catálisis , Compuestos Férricos/química , Hidrógeno/química , Hidrogenación , Óxido de Magnesio/química , Metano/química , Modelos Moleculares , Agua/química
3.
Rev Sci Instrum ; 85(5): 054101, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24880386

RESUMEN

A novel liquid injection vapor generator (LIVG) is demonstrated that is amenable to low vapor pressure explosives, 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. The LIVG operates in a continuous manner, providing a constant and stable vapor output over a period of days and whose concentration can be extended over as much as three orders of magnitude. In addition, a large test atmosphere chamber attached to the LIVG is described, which enables the generation of a stable test atmosphere with controllable humidity and temperature. The size of the chamber allows for the complete insertion of testing instruments or arrays of materials into a uniform test atmosphere, and various electrical feedthroughs, insertion ports, and sealed doors permit simple and effective access to the sample chamber and its vapor.

4.
J Hazard Mater ; 165(1-3): 1068-73, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19097694

RESUMEN

The effects water mist has on the overpressures produced by the detonation of 50 lb equivalent of high explosives (HE) TNT and Destex in a chamber is reported. The overpressures for each charge density were measured with and without mist preemptively sprayed into the space. A droplet analyzer was placed in the chamber prior to the detonation experiments to characterize the water mist used to mitigate the explosion overpressures. The impulse, initial blast wave, and quasi-static overpressure measured in the blast mitigation experiments were reduced by as much as 40%, 36%, 35% for TNT and 43%, 25%, 33% for Destex when water mist was sprayed 60s prior to detonation at a concentration of 70 g/m(3) and droplet Sauter Mean Diameter (SMD) 54 microm. These results suggest that current water mist technology is a potentially promising concept for the mitigation of overpressure effects produced from the detonation of high explosives.


Asunto(s)
Explosiones/prevención & control , Agua/química , Sustancias Explosivas , Presión , Trinitrotolueno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA