Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biotechnol Bioeng ; 112(2): 308-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25117428

RESUMEN

Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Reactores Biológicos , Células Vegetales/metabolismo , Proteínas Recombinantes/metabolismo , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/genética , Línea Celular , Humanos , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Nicotiana
2.
Biotechnol Bioeng ; 111(2): 336-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24030771

RESUMEN

Recombinant pharmaceutical proteins expressed in hairy root cultures can be secreted into the medium to improve product homogeneity and to facilitate purification, although this may result in significant degradation if the protein is inherently unstable or particularly susceptible to proteases. To address these challenges, we used a design of experiments approach to develop an optimized induction protocol for the cultivation of tobacco hairy roots secreting the full-size monoclonal antibody M12. The antibody yield was enhanced 30-fold by the addition of 14 g/L KNO3 , 19 mg/L 1-naphthaleneacetic acid and 1.5 g/L of the stabilizing agent polyvinylpyrrolidone. Analysis of hairy root cross sections revealed that the optimized medium induced lateral root formation and morphological changes in the inner cortex and pericycle cells, indicating that the improved productivity was at least partially based on the enhanced efficiency of antibody secretion. We found that 57% of the antibody was secreted, yielding 5.9 mg of product per liter of induction medium. Both the secreted and intracellular forms of the antibody could be isolated by protein A affinity chromatography and their functionality was confirmed using vitronectin-binding assays. Glycan analysis revealed three major plant complex-type glycans on both forms of the antibody, although the secreted form was more homogeneous due to the predominance of a specific glycoform. Tobacco hairy root cultures therefore offer a practical solution for the production of homogeneous pharmaceutical antibodies in containment.


Asunto(s)
Anticuerpos/metabolismo , Agricultura Molecular/métodos , Nicotiana/metabolismo , Raíces de Plantas/metabolismo , Tecnología Farmacéutica/métodos , Anticuerpos/química , Anticuerpos/genética , Anticuerpos/aislamiento & purificación , Medios de Cultivo/química , Glicosilación , Raíces de Plantas/genética , Polisacáridos/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Nicotiana/genética
3.
Methods Mol Biol ; 2095: 83-103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31858464

RESUMEN

The platforms for bioprocess development have been developed in parallel to the needs of the manufacturing industry of biopharmaceuticals, aiming to ensure the quality and safety of their products. In this sense, Quality by Design (QbD) and Process Analytical Technology (PAT) have become the pillars for quality control and quality assurance.A new combination of Shake Flask Reader (SFR) and Respiration Activity Monitoring System for online determination of OTR and CTR (RAMOS) allows online monitoring of main culture parameters needed for bioprocess development (pH, pO2, OTR, CTR, and QR) as presented below. Eventually, a case study of the application of the combination of SFR-RAMOS system is presented. The case study discloses the optimization of HEK293 cells cultures through the manipulation of their metabolic behavior.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/instrumentación , Técnicas de Cultivo Celular por Lotes/métodos , Medios de Cultivo/metabolismo , Reactores Biológicos , Recuento de Células , Respiración de la Célula , Supervivencia Celular/fisiología , Medios de Cultivo/química , Glucosa/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Oxígeno
4.
Methods Mol Biol ; 2095: 105-123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31858465

RESUMEN

Increasing the cultivation volume from small to large scale can be a rather complex and challenging process when the method of aeration and mixing is different between scales. Orbitally shaken bioreactors (OSBs) utilize the same hydrodynamic principles that define the success of smaller-scale cultures, which are developed on an orbitally shaken platform, and can simplify scale-up. Here we describe the basic working principles of scale-up in terms of the volumetric oxygen transfer coefficient (kLa) and mixing time and how to define these parameters experimentally. The scale-up process from an Erlenmeyer flask shaken on an orbital platform to an orbitally shaken single-use bioreactor (SB10-X, 12 L) is described in terms of both fed-batch and perfusion-based processes. The fed-batch process utilizes a recombinant variant of the mammalian cell line, Chinese hamster ovary (CHO), to express a biosimilar of a therapeutic monoclonal antibody. The perfusion-based process utilizes either an alternating tangential flow filtration (ATF) or a tangential flow filtration (TFF) system for cell retention to cultivate an avian cell line, AGE1.CR.pIX, for the propagation of influenza A virus, H1N1, in high cell density. Based on two example cell cultivations, processes outline the advantages that come with using an orbitally shaken bioreactor for scaling-up a process. The described methods are also applicable to other suspension cell lines.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Técnicas de Cultivo Celular por Lotes/instrumentación , Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Perfusión/métodos , Cultivo de Virus/métodos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/inmunología , Aves/inmunología , Aves/metabolismo , Células CHO , Recuento de Células , Células Cultivadas , Cricetulus , Glicosilación , Subtipo H1N1 del Virus de la Influenza A/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Vacunas/biosíntesis , Vacunas/aislamiento & purificación
5.
Vaccine ; 37(47): 7011-7018, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31266669

RESUMEN

Driven by the concept of plug-and-play cell culture-based viral vaccine production using disposable bioreactors, we evaluated an orbital shaken bioreactor (OSB) for human influenza A virus production at high cell concentration. Therefore, the OSB model SB10-X was coupled to two hollow fiber-based perfusion systems, namely, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF). The AGE1.CR.pIX avian suspension cells grew to 50 × 106 cells/mL in chemically defined medium, maintaining high cell viabilities with an average specific growth rate of 0.020 h-1 (doubling time = 32 h). Maximum virus titers in the range of 3.28-3.73 log10(HA units/100 µL) were achieved, corresponding to cell-specific virus yields of 1000-3500 virions/cell and productivities of 0.5-2.2 × 1012 virions/L/d. This clearly demonstrates the potential of OSB operation in perfusion mode, as results achieved in a reference OSB batch cultivation were 2.64 log10(HA units/100 µL), 1286 virions/cell and 1.4 × 1012 virions/L/d, respectively. In summary, the SB10-X bioreactor can be operated with ATF and TFF systems, which is to our knowledge the first report regarding OSB operation in perfusion mode. Moreover, the results showed that the system is a promising cultivation system for influenza A virus vaccine production. The OSB disposable bioreactor has the potential for simplifying the scale-up from shake flasks to the large-scale bioreactor, facilitating rapid responses in the event of epidemics or pandemics.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos/virología , Filtración/métodos , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/inmunología , Animales , Aves/virología , Línea Celular , Supervivencia Celular/inmunología , Gripe Aviar/inmunología , Vacunas Virales/inmunología , Virión/inmunología , Cultivo de Virus/métodos , Replicación Viral/inmunología
6.
J Biol Eng ; 7(1): 28, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24289110

RESUMEN

BACKGROUND: Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. RESULTS: A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. CONCLUSION: The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

7.
Biotechnol Bioeng ; 98(5): 999-1007, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17497734

RESUMEN

In this paper a novel and easily applied method to measure the mass transfer resistance of the sterile closures (e.g. cotton plug) of shaken bioreactors is introduced. This method requires no investment in special equipment (e.g. an oxygen sensor) and can be performed with the materials usually available in typical laboratories. The method is based on the model of Henzler et al. (1986), which mechanistically describes mass transfer through the sterile closure of a shaken bioreactor based on diffusion coupled with Stefan convection. The concentration dependency of the multi-component diffusion coefficients is taken into account. The water loss from two equivalent shaken bioreactors equipped with sterile closures during several days of shaking is measured. One flask contains distilled water, the other a saturated salt solution. From the water evaporation rate in each of the two flasks, the new model presented calculates the relative humidity in the environment, the average diffusion coefficient of oxygen in the sterile closure (D(O2)), and the diffusion coefficient of carbon dioxide (D(CO2)) . The diffusion coefficient of carbon dioxide (D(CO2)) only depends on the density and material properties of the sterile closure and not on the gas concentrations and is, therefore, an ideal parameter for the characterization of the mass transfer resistance. This new method is validated experimentally by comparing the diffusion coefficient of oxygen (D(O2)) to a measurement by the classic dynamic method; and by comparing the calculated relative humidity in the environment to a humidity sensor measurement.


Asunto(s)
Reactores Biológicos/microbiología , Gases/química , Modelos Teóricos , Agua/química , Técnicas Bacteriológicas/métodos , Dióxido de Carbono/química , Convección , Fibra de Algodón , Difusión , Humedad , Oxígeno/química , Presión Parcial , Reproducibilidad de los Resultados
8.
Appl Microbiol Biotechnol ; 72(6): 1157-60, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16575561

RESUMEN

Oxygen supply is a key parameter in aerobic fermentation processes like the industrial production of amino acids. Although the oxygen transfer rate (OTR; or the volumetric oxygen transfer coefficient k(L)a) is routinely analyzed by engineers during stirred tank fermentations, it is often not taken into account by biologists conducting screening experiments in shake flasks. To show the importance of knowing how to avoid oxygen transfer limitations during primary screenings, Corynebacterium glutamicum ATCC 13032 (wild-type strain) and DSM 12866 (lysine-producing strain) were cultivated in shake flasks with different culture liquid volumes and under different shaking conditions. With the Respiration Activity Monitoring System, the OTR was determined quasi-continuously. Optical density as well as concentrations of lysine and byproducts (lactate, acetate, succinate) were determined off-line and correlated with the OTR signal. From the results, design criteria for improved screening in shaken bioreactors that help to avoid selection of suboptimal strains during early process development steps can be derived. Finally, the suitability of DSM 12866 as a strain for industrial processes with a high space-time yield is discussed.


Asunto(s)
Corynebacterium glutamicum/crecimiento & desarrollo , Corynebacterium glutamicum/metabolismo , Microbiología Industrial/métodos , Lisina/biosíntesis , Consumo de Oxígeno , Ácido Acético/análisis , Biomasa , Reactores Biológicos , Densitometría , Ácido Láctico/análisis , Estadística como Asunto , Ácido Succínico/análisis
9.
Biotechnol Bioeng ; 89(6): 698-708, 2005 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-15696519

RESUMEN

Oxygen limitation is one of the most frequent problems associated with the application of shaking bioreactors. The gas-liquid oxygen transfer properties of shaken 48-well microtiter plates (MTPs) were analyzed at different filling volumes, shaking diameters, and shaking frequencies. On the one hand, an optical method based on sulfite oxidation was used as a chemical model system to determine the maximum oxygen transfer capacity (OTR(max)). On the other hand, the Respiration Activity Monitoring System (RAMOS) was applied for online measurement of the oxygen transfer rate (OTR) during growth of the methylotropic yeast Hansenula polymorpha. A proportionality constant between the OTR(max) of the biological system and the OTR(max) of the chemical system were indicated from these data, offering the possibility to transform the whole set of chemical data to biologically relevant conditions. The results exposed "out of phase" shaking conditions at a shaking diameter of 1 mm, which were confirmed by theoretical consideration with the phase number (Ph). At larger shaking diameters (2-50 mm) the oxygen transfer rate in MTPs shaken at high frequencies reached values of up to 0.28 mol/L/h, corresponding to a volumetric mass transfer coefficient (k(L)a) of 1,600 1/h. The specific mass transfer area (a) increases exponentially with the shaking frequency up to values of 2,400 1/m. On the contrary, the mass transfer coefficient (k(L)) is constant at a level of about 0.15 m/h over a wide range of shaking frequencies and shaking diameters. However, at high shaking frequencies, when the complete liquid volume forms a thin film on the cylindric wall of the well, the mass transfer coefficient (k(L)) increases linearly to values of up to 0.76 m/h. Essentially, the present investigation demonstrates that the 48-well plate outperforms the 96-well MTP and shake flasks at widely used operating conditions with respect to oxygen supply. The 48-well plates emerge, therefore, as an excellent alternative for microbial cultivation and expression studies combining the advantages of both the high-throughput 96-well MTP and the classical shaken Erlenmeyer flask.


Asunto(s)
Técnicas Biosensibles/métodos , Consumo de Oxígeno , Pichia/crecimiento & desarrollo , Sulfitos/química , Tiempo , Reactores Biológicos/microbiología , Técnicas Biosensibles/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Mecanotransducción Celular , Oxidación-Reducción , Sulfitos/metabolismo
10.
J Ind Microbiol Biotechnol ; 30(10): 613-22, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14586804

RESUMEN

Screening cultures are usually non-monitored and non-controlled due to a lack of appropriate measuring techniques. A new device for online measurement of oxygen transfer rate (OTR) in shaking-flask cultures was used for monitoring the screening of Hansenula polymorpha. A shaking frequency of 300 rpm and a filling volume of 20 ml in 250-ml flasks ensured a sufficient oxygen transfer capacity of 0.032 mol (l h)(-1) and thus a respiration not limited by oxygen. Medium buffered with 0.01 mol phosphate l(-1) (pH 6.0) resulted in pH-inhibited respiration, whereas buffering with 0.12 mol phosphate l(-1) (pH 4.1) resulted in respiration that was not inhibited by pH. The ammonium demand was balanced by establishing fixed relations between oxygen, ammonium, and glycerol consumption with 0.245+/-0.015 mol ammonium per mol glycerol. Plate precultures with complex glucose medium reduced the specific growth rate coefficient to 0.18 h(-1) in subsequent cultures with minimal glycerol medium. The specific growth rate coefficient increased to 0.26 h(-1) when exponentially growing precultures with minimal glycerol medium were used for inoculation. Changes in biomass, glycerol, ammonium, and pH over time were simulated on the basis of oxygen consumption.


Asunto(s)
Biotecnología/métodos , Pruebas Genéticas/métodos , Oxígeno/metabolismo , Pichia/genética , Pichia/metabolismo , Antineoplásicos/metabolismo , Clonación Molecular , Medios de Cultivo , Fermentación , Concentración de Iones de Hidrógeno , Interferón alfa-2 , Interferón-alfa/biosíntesis , Modelos Biológicos , Pichia/crecimiento & desarrollo , Compuestos de Amonio Cuaternario/metabolismo , Proteínas Recombinantes , Uracilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA