Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Infect Immun ; 91(7): e0049122, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37347192

RESUMEN

Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a host-derived vacuole termed the inclusion. Central to pathogenesis is a type III secretion system that translocates effector proteins into the host cell, which are predicted to play major roles in host cell invasion, nutrient acquisition, and immune evasion. However, until recently, the genetic intractability of C. trachomatis hindered identification and characterization of these important virulence factors. Here, we sought to expand the repertoire of identified effector proteins and confirm they are secreted during C. trachomatis infection. Utilizing bioinformatics, we identified 18 candidate substrates that had not been previously assessed for secretion, of which we show four to be secreted, using Yersinia pseudotuberculosis as a surrogate host. Using adenylate cyclase (CyaA), BlaM, and glycogen synthase kinase (GSK) secretion assays, we identified nine novel substrates that were secreted in at least one assay. Interestingly, only three of the substrates, shown to be translocated by C. trachomatis, were similarly secreted by Y. pseudotuberculosis. Using large-scale screens to determine subcellular localization and identify effectors that perturb crucial host cell processes, we identified one novel substrate, CT392, that is toxic when heterologously expressed in Saccharomyces cerevisiae. Toxicity required both the N- and C-terminal regions of the protein. Additionally, we show that these newly described substrates traffic to distinct host cell compartments, including vesicles and the cytoplasm. Collectively, our study expands the known repertoire of C. trachomatis secreted factors and highlights the importance of testing for secretion in the native host using multiple secretion assays when possible.


Asunto(s)
Proteínas Bacterianas , Infecciones por Chlamydia , Humanos , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Células HeLa , Citoplasma/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
2.
Infect Immun ; 90(5): e0062821, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35435726

RESUMEN

Orientia tsutsugamushi is a genetically intractable obligate intracellular bacterium, causes scrub typhus, and has one of the largest known armamentariums of ankyrin repeat-containing effectors (Anks). Most have a C-terminal F-box presumed to interact with the SCF ubiquitin ligase complex primarily based on their ability to bind overexpressed Skp1. Whether all F-box-containing Anks bind endogenous SCF components and the F-box residues essential for such interactions has gone unexplored. Many O. tsutsugamushi Ank F-boxes occur as part of a PRANC (pox protein repeats of ankyrin-C-terminal) domain. Roles of the non-F-box portion of the PRANC and intervening sequence region (ISR) that links the ankyrin repeat and F-box/PRANC domains are unknown. The functional relevance of these effectors' non-ankyrin repeat domains was investigated. The F-box was necessary for Flag-tagged versions of most F-box-containing Anks to precipitate endogenous Skp1, Cul1, and/or Rbx1, while the ISR and PRANC were dispensable. Ank toxicity in yeast was predominantly F-box dependent. Interrogations of Ank1, Ank5, and Ank6 established that L1, P2, E4, I9, and D17 of the F-box consensus are key for binding native SCF components and for Ank1 and Ank6 to inhibit NF-κB. The ISR is also essential for Ank1 and Ank6 to impair NF-κB. Ectopically expressed Ank1 and Ank6 lacking the ISR or having a mutagenized F-box incapable of binding SCF components performed as dominant-negative inhibitors to block O. tsutsugamushi NF-κB modulation. This study advances knowledge of O. tsutsugamushi Ank functional domains and offers an approach for validating their roles in infection.


Asunto(s)
Orientia tsutsugamushi , Tifus por Ácaros , Repetición de Anquirina , Proteínas Bacterianas/metabolismo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Orientia tsutsugamushi/genética
3.
PLoS Pathog ; 16(9): e1008878, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32946535

RESUMEN

As an obligate intracellular pathogen, host cell invasion is paramount to Chlamydia trachomatis proliferation. While the mechanistic underpinnings of this essential process remain ill-defined, it is predicted to involve delivery of prepackaged effector proteins into the host cell that trigger plasma membrane remodeling and cytoskeletal reorganization. The secreted effector proteins TmeA and TarP, have risen to prominence as putative key regulators of cellular invasion and bacterial pathogenesis. Although several studies have begun to unravel molecular details underlying the putative function of TarP, the physiological function of TmeA during host cell invasion is unknown. Here, we show that TmeA employs molecular mimicry to bind to the GTPase binding domain of N-WASP, which results in recruitment of the actin branching ARP2/3 complex to the site of chlamydial entry. Electron microscopy revealed that TmeA mutants are deficient in filopodia capture, suggesting that TmeA/N-WASP interactions ultimately modulate host cell plasma membrane remodeling events necessary for chlamydial entry. Importantly, while both TmeA and TarP are necessary for effective host cell invasion, we show that these effectors target distinct pathways that ultimately converge on activation of the ARP2/3 complex. In line with this observation, we show that a double mutant suffers from a severe entry defect nearly identical to that observed when ARP3 is chemically inhibited or knocked down. Collectively, our study highlights both TmeA and TarP as essential regulators of chlamydial invasion that modulate the ARP2/3 complex through distinct signaling platforms, resulting in plasma membrane remodeling events that are essential for pathogen uptake.


Asunto(s)
Proteínas Bacterianas , Membrana Celular/metabolismo , Chlamydia trachomatis , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/genética , Membrana Celular/patología , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/patogenicidad , Células HeLa , Humanos , Mutación , Dominios Proteicos , Seudópodos/genética , Seudópodos/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética
4.
Microbiol Resour Announc ; 13(3): e0121723, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38294211

RESUMEN

Here, we report the annotated genome of enterococcal phage G01. The G01 genome is 41,189 bp in length and contains 67 predicted open reading frames. Host range analysis revealed G01 can infect 28.6% (6/21) of Enterococcus faecalis strains tested and appears to not require the enterococcal phage infection protein PIPEF.

5.
FEMS Microbes ; 5: xtae022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156124

RESUMEN

Increased prevalence of multidrug-resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics, we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered that numerous uncharacterized phage proteins are produced during phage infection of E. faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum-sensing-regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the quorum-sensing regulator fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the putative murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.

6.
bioRxiv ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38766208

RESUMEN

Increased prevalence of multidrug resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered numerous uncharacterized phage proteins are produced during phage infection of Enterococcus faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum sensing regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.

7.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091754

RESUMEN

Transfer RNAs are the fundamental adapter molecules of protein synthesis and the most abundant and heterogeneous class of noncoding RNA molecules in cells. The study of tRNA repertoires remains challenging, complicated by the presence of dozens of post transcriptional modifications. Nanopore sequencing is an emerging technology with promise for both tRNA sequencing and the detection of RNA modifications; however, such studies have been limited by the throughput and accuracy of direct RNA sequencing methods. Moreover, detection of the complete set of tRNA modifications by nanopore sequencing remains challenging. Here we show that recent updates to nanopore direct RNA sequencing chemistry (RNA004) combined with our own optimizations to tRNA sequencing protocols and analysis workflows enable high throughput coverage of tRNA molecules and characterization of nanopore signals produced by 43 distinct RNA modifications. We share best practices and protocols for nanopore sequencing of tRNA and further report successful detection of low abundance mitochondrial and viral tRNAs, providing proof of concept for use of nanopore sequencing to study tRNA populations in the context of infection and organelle biology. This work provides a roadmap to guide future efforts towards de novo detection of RNA modifications across multiple organisms using nanopore sequencing.

8.
Nat Commun ; 15(1): 6955, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138193

RESUMEN

The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in vancomycin-resistant E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.


Asunto(s)
Bacteriófagos , Enterococcus faecalis , Proteínas Virales , Enterococcus faecalis/virología , Enterococcus faecalis/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción del ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Enterococos Resistentes a la Vancomicina/genética , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
9.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712050

RESUMEN

Chlamydia trachomatis (C.t.), the leading cause of bacterial sexually transmitted infections, employs a type III secretion system (T3SS) to translocate two classes of effectors, inclusion membrane proteins and conventional T3SS (cT3SS) effectors, into the host cell to counter host defense mechanisms. Here we employed three assays to directly evaluate secretion during infection, validating secretion for 23 cT3SS effectors. As bioinformatic analyses have been largely unrevealing, we conducted affinity purification-mass spectrometry to identify host targets and gain insights into the functions of these effectors, identifying high confidence interacting partners for 21 cT3SS effectors. We demonstrate that CebN localizes to the nuclear envelope in infected and bystander cells where it interacts with multiple nucleoporins and Rae1, blocking STAT1 nuclear import following IFN-γ stimulation. By building a cT3SS effector-host interactome, we have identified novel pathways that are targeted during bacterial infection and have begun to address how C.t. effectors combat cell autonomous immunity.

10.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38014348

RESUMEN

The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of new antibiotics needed to combat these infections remains stagnant. MDR enterococci, which are a common cause of hospital-acquired infections, are emerging as one of the major contributors to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which entails the use of lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of phage resistance and the mechanisms underlying this resistance are unknown. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from vancomycin-resistant Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) and we show that this enzyme is sufficient to restrict the replication of the lytic phage in E. faecalis. We further find that phages can evolve to overcome restriction by acquiring a missense mutation in a novel TIV-RE inhibitor protein encoded by many enterococcal phages. We show that this inhibitor, which we have named anti-restriction-factor A (arfA), directly binds to and inactivates diverse TIV-REs. Overall, our findings significantly advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages can evolve to overcome antiphage defense systems.

11.
Pathog Dis ; 79(2)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33512479

RESUMEN

Chlamydia trachomatis is the leading cause of infectious blindness and a sexually transmitted infection. All chlamydiae are obligate intracellular bacteria that replicate within a membrane-bound vacuole termed the inclusion. From the confines of the inclusion, the bacteria must interact with many host organelles to acquire key nutrients necessary for replication, all while promoting host cell viability and subverting host defense mechanisms. To achieve these feats, C. trachomatis delivers an arsenal of virulence factors into the eukaryotic cell via a type 3 secretion system (T3SS) that facilitates invasion, manipulation of host vesicular trafficking, subversion of host defense mechanisms and promotes bacteria egress at the conclusion of the developmental cycle. A subset of these proteins intercalate into the inclusion and are thus referred to as inclusion membrane proteins. Whereas others, referred to as conventional T3SS effectors, are released into the host cell where they localize to various eukaryotic organelles or remain in the cytosol. Here, we discuss the functions of T3SS effector proteins with a focus on how advances in chlamydial genetics have facilitated the identification and molecular characterization of these important factors.


Asunto(s)
Proteínas Bacterianas/fisiología , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/fisiología , Chlamydia trachomatis/patogenicidad , Interacciones Huésped-Patógeno , Cuerpos de Inclusión/metabolismo , Sistemas de Secreción Tipo III/fisiología , Células HeLa , Humanos , Cuerpos de Inclusión/microbiología , Transporte de Proteínas , Vacuolas/metabolismo , Vacuolas/microbiología , Factores de Virulencia
12.
mBio ; 12(4): e0181621, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34340535

RESUMEN

Orientia tsutsugamushi is the etiologic agent of scrub typhus, the deadliest of all diseases caused by obligate intracellular bacteria. Nucleomodulins, bacterial effectors that dysregulate eukaryotic transcription, are being increasingly recognized as key virulence factors. How they translocate into the nucleus and their functionally essential domains are poorly defined. We demonstrate that Ank13, an O. tsutsugamushi effector conserved among clinical isolates and expressed during infection, localizes to the nucleus in an importin ß1-independent manner. Rather, Ank13 nucleotropism requires an isoleucine at the thirteenth position of its fourth ankyrin repeat, consistent with utilization of eukaryotic RaDAR (RanGDP-ankyrin repeats) nuclear import. RNA-seq analyses of cells expressing green fluorescent protein (GFP)-tagged Ank13, nucleotropism-deficient Ank13I127R, or Ank13ΔF-box, which lacks the F-box domain essential for interacting with SCF ubiquitin ligase, revealed Ank13 to be a nucleomodulin that predominantly downregulates transcription of more than 2,000 genes. Its ability to do so involves its nucleotropism and F-box in synergistic and mutually exclusive manners. Ank13 also acts in the cytoplasm to dysregulate smaller cohorts of genes. The effector's toxicity in yeast heavily depends on its F-box and less so on its nucleotropism. Genes negatively regulated by Ank13 include those involved in the inflammatory response, transcriptional control, and epigenetics. Importantly, the majority of genes that GFP-Ank13 most strongly downregulates are quiescent or repressed in O. tsutsugamushi-infected cells when Ank13 expression is strongest. Ank13 is the first nucleomodulin identified to coopt RaDAR and a multifaceted effector that functions in the nucleus and cytoplasm via F-box-dependent and -independent mechanisms to globally reprogram host cell transcription. IMPORTANCE Nucleomodulins are recently defined effectors used by diverse intracellular bacteria to manipulate eukaryotic gene expression and convert host cells into hospitable niches. How nucleomodulins enter the nucleus, their functional domains, and the genes that they modulate are incompletely characterized. Orientia tsutsugamushi is an intracellular bacterial pathogen that causes scrub typhus, which can be fatal. O. tsutsugamushi Ank13 is the first example of a microbial protein that coopts eukaryotic RaDAR (RanGDP-ankyrin repeats) nuclear import. It dysregulates expression of a multitude of host genes with those involved in transcriptional control and the inflammatory response being among the most prominent. Ank13 does so via mechanisms that are dependent and independent of both its nucleotropism and eukaryotic-like F-box domain that interfaces with ubiquitin ligase machinery. Nearly all the genes most strongly downregulated by ectopically expressed Ank13 are repressed in O. tsutsugamushi-infected cells, implicating its importance for intracellular colonization and scrub typhus molecular pathogenesis.


Asunto(s)
Ancirinas/genética , Proteínas Bacterianas/genética , Núcleo Celular/metabolismo , Orientia tsutsugamushi/genética , Transcripción Genética , Transporte Activo de Núcleo Celular , Ancirinas/metabolismo , Proteínas Bacterianas/metabolismo , Células HeLa , Humanos , Orientia tsutsugamushi/metabolismo
13.
Cell Rep ; 26(12): 3380-3390.e5, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893609

RESUMEN

Chlamydial infection requires the formation of a membrane-bound vacuole, termed the inclusion, that undergoes extensive interactions with select host organelles. The importance of the Inc protein CT229 in the formation and maintenance of the chlamydial inclusion was recently highlighted by studies demonstrating that its absence during infection results in reduced bacterial replication, premature inclusion lysis, and host cell death. Previous reports have indicated that CT229 binds Rab GTPases; however, the physiological implications of this interaction are unknown. Here, we show that CT229 regulates host multivesicular trafficking by recruiting multiple Rab GTPases and their cognate effectors to the inclusion. We demonstrate that CT229 specifically modulates clathrin-coated vesicle trafficking and regulates the trafficking of transferrin and the mannose-6-phosphate receptor, both of which are crucial for proper chlamydial development. This study highlights CT229 as a master regulator of multiple host vesicular trafficking pathways essential for chlamydial infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico Activo , Infecciones por Chlamydia/genética , Infecciones por Chlamydia/patología , Chlamydia trachomatis/genética , Vesículas Cubiertas por Clatrina/genética , Vesículas Cubiertas por Clatrina/microbiología , Células HeLa , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/microbiología , Vacuolas/genética , Vacuolas/microbiología , Proteínas de Unión al GTP rab/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-32039039

RESUMEN

Chlamydia trachomatis serovars A-C infect conjunctival epithelial cells and untreated infection can lead to blindness. D-K infect genital tract epithelial cells resulting in pelvic inflammatory disease, ectopic pregnancy, and sterility while L1-L3 infect epithelial cells and macrophages, causing an invasive infection. Despite some strains of Chlamydia sharing high nucleotide sequence similarity, the bacterial and host factors that govern tissue and cellular tropism remain largely unknown. Following introduction of C. trachomatis via intercourse, epithelial cells of the vagina, foreskin, and ectocervix are exposed to large numbers of the pathogen, yet their response to infection and the dynamics of chlamydial growth in these cells has not been well-characterized compared to growth in more permissive cell types that harbor C. trachomatis. We compared intracellular replication and inclusion development of representative C. trachomatis serovars in immortalized human conjunctival epithelial, urogenital epithelial, PMA stimulated THP-1 (macrophages), and HeLa cells. We demonstrate that urogenital epithelial cells of the vagina, ectocervix, and foreskin restrict replication of serovar A while promoting robust replication and inclusion development of serovar D and L2. Macrophages restrict serovars D and A while L2 proliferates in these cells. Furthermore, we show that GM-CSF, RANTES, GROα, IL-1α, IL-1ß, IP-10, IL-8, and IL-18 are produced in a cell-type and serovar-specific manner. Collectively we have established a series of human cell lines that represent some of the first cell types to encounter C. trachomatis following exposure and show that differential production of key cytokines early during infection could regulate serovar-host cell specificity.


Asunto(s)
Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/clasificación , Chlamydia trachomatis/fisiología , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Mediadores de Inflamación/metabolismo , Línea Celular , Células HeLa , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Macrófagos/inmunología , Macrófagos/metabolismo , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA