Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 160(4): 595-606, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25640239

RESUMEN

Functional micropeptides can be concealed within RNAs that appear to be noncoding. We discovered a conserved micropeptide, which we named myoregulin (MLN), encoded by a skeletal muscle-specific RNA annotated as a putative long noncoding RNA. MLN shares structural and functional similarity with phospholamban (PLN) and sarcolipin (SLN), which inhibit SERCA, the membrane pump that controls muscle relaxation by regulating Ca(2+) uptake into the sarcoplasmic reticulum (SR). MLN interacts directly with SERCA and impedes Ca(2+) uptake into the SR. In contrast to PLN and SLN, which are expressed in cardiac and slow skeletal muscle in mice, MLN is robustly expressed in all skeletal muscle. Genetic deletion of MLN in mice enhances Ca(2+) handling in skeletal muscle and improves exercise performance. These findings identify MLN as an important regulator of skeletal muscle physiology and highlight the possibility that additional micropeptides are encoded in the many RNAs currently annotated as noncoding.


Asunto(s)
Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , ARN Largo no Codificante/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/química , Músculo Esquelético/citología , Miocardio/metabolismo , Estructura Secundaria de Proteína , Proteolípidos/metabolismo , ARN Largo no Codificante/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Alineación de Secuencia
2.
Genes Dev ; 35(11-12): 835-840, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33985971

RESUMEN

Myocardin, a potent coactivator of serum response factor (SRF), competes with ternary complex factor (TCF) proteins for SRF binding to balance opposing mitogenic and myogenic gene programs in cardiac and smooth muscle. Here we identify a cardiac lncRNA transcribed adjacent to myocardin, named CARDINAL, which antagonizes SRF-dependent mitogenic gene transcription in the heart. CARDINAL-deficient mice show ectopic TCF/SRF-dependent mitogenic gene expression and decreased cardiac contractility in response to age and ischemic stress. CARDINAL forms a nuclear complex with SRF and inhibits TCF-mediated transactivation of the promitogenic gene c-fos, suggesting CARDINAL functions as an RNA cofactor for SRF in the heart.


Asunto(s)
Regulación de la Expresión Génica/genética , Corazón/fisiología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica/genética , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factor de Respuesta Sérica/genética , Transactivadores/genética , Activación Transcripcional
3.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732238

RESUMEN

Efficient repair of skeletal muscle relies upon the precise coordination of cells between the satellite cell niche and innate immune cells that are recruited to the site of injury. The expression of pro-inflammatory cytokines and chemokines such as TNFα, IFNγ, CXCL1, and CCL2, by muscle and tissue resident immune cells recruits neutrophils and M1 macrophages to the injury and activates satellite cells. These signal cascades lead to highly integrated temporal and spatial control of muscle repair. Despite the therapeutic potential of these factors for improving tissue regeneration after traumatic and chronic injuries, their transcriptional regulation is not well understood. The transcription factor Mohawk (Mkx) functions as a repressor of myogenic differentiation and regulates fiber type specification. Embryonically, Mkx is expressed in all progenitor cells of the musculoskeletal system and is expressed in human and mouse myeloid lineage cells. An analysis of mice deficient for Mkx revealed a delay in postnatal muscle repair characterized by impaired clearance of necrotic fibers and smaller newly regenerated fibers. Further, there was a delay in the expression of inflammatory signals such as Ccl2, Ifnγ, and Tgfß. This was coupled with impaired recruitment of pro-inflammatory macrophages to the site of muscle damage. These studies demonstrate that Mkx plays a critical role in adult skeletal muscle repair that is mediated through the initial activation of the inflammatory response.


Asunto(s)
Inflamación , Músculo Esquelético , Animales , Humanos , Ratones , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Regeneración , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
Mamm Genome ; 33(2): 354-365, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35048139

RESUMEN

Long noncoding RNAs (LncRNAs) have emerged as a diverse class of functional molecules that contribute to nearly every facet of mammalian cardiac development and disease. Recent examples show that lncRNAs can be important co-regulators of cardiac patterning and morphogenesis and modulators of the pathogenic signaling that drives heart disease. The flexibility and chemical nature of RNA allows lncRNAs to utilize diverse mechanisms, mediating their effects through their sequence, structure, and molecular interactions with DNA, protein, and other RNAs. In vivo, i.e., animal, studies of individual lncRNAs highlight their ability to balance conserved cardiac gene expression networks, serve as specific and early biomarkers, and indicate their promise as useful therapeutic targets to treat human heart disease. Here, we review recent functionally characterized lncRNAs in cardiac biology and pathology and provide a perspective on emerging approaches to decipher the role of lncRNAs in the heart.


Asunto(s)
Cardiopatías , ARN Largo no Codificante , Animales , Redes Reguladoras de Genes , Corazón , Cardiopatías/genética , Mamíferos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
5.
Nature ; 539(7629): 433-436, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27783597

RESUMEN

HAND2 is an ancestral regulator of heart development and one of four transcription factors that control the reprogramming of fibroblasts into cardiomyocytes. Deletion of Hand2 in mice results in right ventricle hypoplasia and embryonic lethality. Hand2 expression is tightly regulated by upstream enhancers that reside within a super-enhancer delineated by histone H3 acetyl Lys27 (H3K27ac) modifications. Here we show that transcription of a Hand2-associated long non-coding RNA, which we named upperhand (Uph), is required to maintain the super-enhancer signature and elongation of RNA polymerase II through the Hand2 enhancer locus. Blockade of Uph transcription, but not knockdown of the mature transcript, abolished Hand2 expression, causing right ventricular hypoplasia and embryonic lethality in mice. Given the substantial number of uncharacterized promoter-associated long non-coding RNAs encoded by the mammalian genome, the Uph-Hand2 regulatory partnership offers a mechanism by which divergent non-coding transcription can establish a permissive chromatin environment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cromatina/genética , Corazón/embriología , Organogénesis/genética , ARN Largo no Codificante/genética , Transcripción Genética/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Pérdida del Embrión/genética , Elementos de Facilitación Genéticos/genética , Técnicas de Inactivación de Genes , Cardiopatías Congénitas/genética , Ventrículos Cardíacos/anomalías , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/biosíntesis , Elongación de la Transcripción Genética
6.
Proc Natl Acad Sci U S A ; 113(31): E4494-503, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27418600

RESUMEN

Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve-muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve-muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Síndrome Debilitante/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Desnervación Muscular , Músculo Esquelético/inervación , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Síndrome Debilitante/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(2): 338-43, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26719419

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart.


Asunto(s)
Envejecimiento/genética , Sistemas CRISPR-Cas/genética , Eliminación de Gen , Miocardio/metabolismo , Animales , Cardiomegalia/complicaciones , Cardiomegalia/patología , Separación Celular , Dependovirus/metabolismo , Técnicas de Silenciamiento del Gen , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Ratones Transgénicos , Modelos Animales , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Especificidad de Órganos/genética , ARN Guía de Kinetoplastida/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(29): 11881-6, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818578

RESUMEN

Excitation-contraction (EC) coupling comprises events in muscle that convert electrical signals to Ca(2+) transients, which then trigger contraction of the sarcomere. Defects in these processes cause a spectrum of muscle diseases. We report that STAC3, a skeletal muscle-specific protein that localizes to T tubules, is essential for coupling membrane depolarization to Ca(2+) release from the sarcoplasmic reticulum (SR). Consequently, homozygous deletion of src homology 3 and cysteine rich domain 3 (Stac3) in mice results in complete paralysis and perinatal lethality with a range of musculoskeletal defects that reflect a blockade of EC coupling. Muscle contractility and Ca(2+) release from the SR of cultured myotubes from Stac3 mutant mice could be restored by application of 4-chloro-m-cresol, a ryanodine receptor agonist, indicating that the sarcomeres, SR Ca(2+) store, and ryanodine receptors are functional in Stac3 mutant skeletal muscle. These findings reveal a previously uncharacterized, but required, component of the EC coupling machinery of skeletal muscle and introduce a candidate for consideration in myopathic disorders.


Asunto(s)
Calcio/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Potenciales de Acción/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Northern Blotting , Western Blotting , Cartilla de ADN/genética , Electroporación , Genotipo , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , beta-Galactosidasa
9.
Dev Dyn ; 242(11): 1332-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24038871

RESUMEN

BACKGROUND: Dynamic alterations in cell shape, migration, and adhesion play a central role in tissue morphogenesis during embryonic development and congenital disease. The mesenchymal-to-epithelial transition that occurs during vertebrate somitogenesis is required for proper patterning of the axial musculoskeletal system. Somitic MET is initiated in the presomitic mesoderm by PARAXIS-dependent changes in cell adhesion, cell polarity, and the composition of the extracellular matrix. However, the target genes downstream of the transcription factor PARAXIS remain poorly described. RESULTS: A genome-wide comparison of gene expression in the anterior presomitic mesoderm and newly formed somites of Paraxis(-/-) embryos resulted in a set of deregulated genes enriched for factors associated with extracellular matrix and cytoskeletal organization and cell-cell and cell-ECM adhesion. The greatest change in expression was seen in fibroblast activation protein alpha (Fap), encoding a dipeptidyl peptidase capable of increasing fibronectin and collagen fiber organization in extracellular matrix. Further, downstream genes in the Wnt and Notch signaling pathways were downregulated, predicting that PARAXIS participates in positive feedback loops in both pathways. CONCLUSIONS: These data demonstrate that PARAXIS initiates and stabilizes somite epithelialization by integrating signals from multiple pathways to control the reorganization of the ECM, cytoskeleton, and adhesion junctions during MET.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Somitos/citología , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endopeptidasas , Transición Epitelial-Mesenquimal/genética , Técnica del Anticuerpo Fluorescente Indirecta , Gelatinasas/genética , Gelatinasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Biol Chem ; 287(42): 35351-35359, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22923612

RESUMEN

The homeobox transcription factor Mohawk (Mkx) is a potent transcriptional repressor expressed in the embryonic precursors of skeletal muscle, cartilage, and bone. MKX has recently been shown to be a critical regulator of musculoskeletal tissue differentiation and gene expression; however, the genetic pathways through which MKX functions and its DNA-binding properties are currently unknown. Using a modified bacterial one-hybrid site selection assay, we determined the core DNA-recognition motif of the mouse monomeric Mkx homeodomain to be A-C-A. Using cell-based assays, we have identified a minimal Mkx-responsive element (MRE) located within the Mkx promoter, which is composed of a highly conserved inverted repeat of the core Mkx recognition motif. Using the minimal MRE sequence, we have further identified conserved MREs within the locus of Sox6, a transcription factor that represses slow fiber gene expression during skeletal muscle differentiation. Real-time PCR and immunostaining of in vitro differentiated muscle satellite cells isolated from Mkx-null mice revealed an increase in the expression of Sox6 and down-regulation of slow fiber structural genes. Together, these data identify the unique DNA-recognition properties of MKX and reveal a novel role for Mkx in promoting slow fiber type specification during skeletal muscle differentiation.


Asunto(s)
ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Represoras/metabolismo , Elementos de Respuesta/fisiología , Secuencias de Aminoácidos , Animales , Diferenciación Celular/fisiología , ADN/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Músculo Esquelético/citología , Células 3T3 NIH , Unión Proteica , Proteínas Represoras/genética , Factores de Transcripción SOXD/biosíntesis , Factores de Transcripción SOXD/genética
11.
Dev Biol ; 360(2): 318-28, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22008793

RESUMEN

Allurin, a 21 kDa protein isolated from egg jelly of the frog Xenopus laevis, has previously been demonstrated to attract frog sperm in two-chamber and microscopic assays. cDNA cloning and sequencing has shown that allurin is a truncated member of the Cysteine-Rich Secretory Protein (CRISP) family, whose members include mammalian sperm-binding proteins that have been postulated to play roles in spermatogenesis, sperm capacitation and sperm-egg binding in mammals. Here, we show that allurin is a chemoattractant for mouse sperm, as determined by a 2.5-fold stimulation of sperm passage across a porous membrane and by analysis of sperm trajectories within an allurin gradient as observed by time-lapse microscopy. Chemotaxis was accompanied by an overall change in trajectory from circular to linear thereby increasing sperm movement along the gradient axis. Allurin did not increase sperm velocity although it did produce a modest increase in flagellar beat frequency. Oregon Green 488-conjugated allurin was observed to bind to the sub-equatorial region of the mouse sperm head and to the midpiece of the flagellum. These findings demonstrate that sperm have retained the ability to bind and respond to truncated Crisp proteins over 300 million years of vertebrate evolution.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores Quimiotácticos/metabolismo , Quimiotaxis/fisiología , Proteínas del Huevo/metabolismo , Glicoproteínas de Membrana/metabolismo , Espermatozoides/fisiología , Proteínas de Xenopus/metabolismo , Animales , Proteínas Portadoras/genética , Factores Quimiotácticos/genética , Proteínas del Huevo/genética , Masculino , Glicoproteínas de Membrana/genética , Ratones , Transducción de Señal , Proteínas de Xenopus/genética , Xenopus laevis
13.
Sci Signal ; 9(457): ra119, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27923914

RESUMEN

Micropeptides function as master regulators of calcium-dependent signaling in muscle. Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), the membrane pump that promotes muscle relaxation by taking up Ca2+ into the sarcoplasmic reticulum, is directly inhibited by three muscle-specific micropeptides: myoregulin (MLN), phospholamban (PLN), and sarcolipin (SLN). The widespread and essential function of SERCA across diverse cell types has raised questions as to how SERCA is regulated in cells that lack MLN, PLN, and SLN. We identified two transmembrane micropeptides, endoregulin (ELN) and another-regulin (ALN), that share key amino acids with their muscle-specific counterparts and function as direct inhibitors of SERCA pump activity. The distribution of transcripts encoding ELN and ALN mirrored that of SERCA isoform-encoding transcripts in nonmuscle cell types. Our findings identify additional members of the SERCA-inhibitory micropeptide family, revealing a conserved mechanism for the control of intracellular Ca2+ dynamics in both muscle and nonmuscle cell types.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Animales , Células COS , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/farmacología , Chlorocebus aethiops , Masculino , Ratones , Proteínas Musculares/química , Proteínas Musculares/farmacología , Proteolípidos/química , Proteolípidos/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
14.
Science ; 351(6270): 271-5, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26816378

RESUMEN

Muscle contraction depends on release of Ca(2+) from the sarcoplasmic reticulum (SR) and reuptake by the Ca(2+)adenosine triphosphatase SERCA. We discovered a putative muscle-specific long noncoding RNA that encodes a peptide of 34 amino acids and that we named dwarf open reading frame (DWORF). DWORF localizes to the SR membrane, where it enhances SERCA activity by displacing the SERCA inhibitors, phospholamban, sarcolipin, and myoregulin. In mice, overexpression of DWORF in cardiomyocytes increases peak Ca(2+) transient amplitude and SR Ca(2+) load while reducing the time constant of cytosolic Ca(2+) decay during each cycle of contraction-relaxation. Conversely, slow skeletal muscle lacking DWORF exhibits delayed Ca(2+) clearance and relaxation and reduced SERCA activity. DWORF is the only endogenous peptide known to activate the SERCA pump by physical interaction and provides a means for enhancing muscle contractility.


Asunto(s)
Contracción Muscular , Músculo Esquelético/metabolismo , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Contracción Miocárdica , Péptidos/genética , Proteolípidos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Retículo Sarcoplasmático/metabolismo , Transcripción Genética
15.
Dev Dyn ; 238(3): 572-80, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19235719

RESUMEN

Mohawk is an atypical homeobox gene expressed in embryonic progenitor cells of skeletal muscle, tendon, and cartilage. We demonstrate that Mohawk functions as a transcriptional repressor capable of blocking the myogenic conversion of 10T1/2 fibroblasts. The repressor activity is located in three small, evolutionarily conserved domains (MRD1-3) in the carboxy-terminal half of the protein. Point mutation analysis revealed six residues in MRD1 are sufficient for repressor function. The carboxy-terminal half of Mohawk is able to recruit components of the Sin3A/HDAC co-repressor complex (Sin3A, Hdac1, and Sap18) and a subset of Polymerase II general transcription factors (Tbp, TFIIA1 and TFIIB). Furthermore, Sap18, a protein that bridges the Sin3A/HDAC complex to DNA-bound transcription factors, is co-immunoprecipitated by MRD1. These data predict that Mohawk can repress transcription through recruitment of the Sin3A/HDAC co-repressor complex, and as a result, repress target genes required for the differentiation of cells to the myogenic lineage.


Asunto(s)
Regulación hacia Abajo , Histona Desacetilasas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Línea Celular , Proteínas de Homeodominio/genética , Ratones , Modelos Moleculares , Mioblastos/citología , Mioblastos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Complejo Correpresor Histona Desacetilasa y Sin3 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Dev Biol ; 305(1): 172-86, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17362910

RESUMEN

During somitogenesis, oscillatory expression of genes in the notch and wnt signaling pathways plays a key role in regulating segmentation. These oscillations in expression levels are elements of a species-specific developmental mechanism. To date, the periodicity and components of the human clock remain unstudied. Here we show that a human mesenchymal stem/stromal cell (MSC) model can be induced to display oscillatory gene expression. We observed that the known cycling gene HES1 oscillated with a 5 h period consistent with available data on the rate of somitogenesis in humans. We also observed cycling of Hes1 expression in mouse C2C12 myoblasts with a period of 2 h, consistent with previous in vitro and embryonic studies. Furthermore, we used microarray and quantitative PCR (Q-PCR) analysis to identify additional genes that display oscillatory expression both in vitro and in mouse embryos. We confirmed oscillatory expression of the notch pathway gene Maml3 and the wnt pathway gene Nkd2 by whole mount in situ hybridization analysis and Q-PCR. Expression patterns of these genes were disrupted in Wnt3a(tm1Amc) mutants but not in Dll3(pu) mutants. Our results demonstrate that human and mouse in vitro models can recapitulate oscillatory expression observed in embryo and that a number of genes in multiple developmental pathways display dynamic expression in vitro.


Asunto(s)
Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/fisiología , Somitos/fisiología , Animales , Células Cultivadas , Humanos , Hibridación in Situ , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos
17.
Dev Dyn ; 235(3): 792-801, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16408284

RESUMEN

Homeodomain-containing proteins comprise a superfamily of transcription factors that participate in the regulation of almost all aspects of embryonic development. Here, we describe the mouse embryonic expression pattern of Mohawk, a new member of the TALE superclass of atypical homeobox genes that is most-closely related to the Iroquois class. During mouse development, Mohawk was transcribed in cell lineages derived from the somites. As early as embryonic day 9.0, Mohawk was expressed in an anterior to posterior gradient in the dorsomedial and ventrolateral lips of the dermomyotome of the somites that normally give rise to skeletal muscle. Mohawk transcription in the dorsomedial region required the expression of the transcription factor paraxis. As somites matured, Mohawk transcription was observed in the tendon-specific syndetome and the sclerotome-derived condensing mesenchyme that prefigures the proximal ribs and vertebral bodies. In the limbs, Mohawk was expressed in a pattern consistent with the developing tendons that form along the dorsal and ventral aspect of the phalanges. Finally, Mohawk was detectable in the tips of the ureteric buds in the metanephric kidneys and the testis cords of the male gonad. Together, these observations suggest that Mohawk is an important regulator of vertebrate development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones/embriología , Secuencia de Aminoácidos , Animales , Embrión de Mamíferos/química , Expresión Génica , Genes Homeobox/genética , Gónadas/química , Gónadas/embriología , Gónadas/metabolismo , Proteínas de Homeodominio/análisis , Proteínas de Homeodominio/clasificación , Riñón/química , Riñón/embriología , Riñón/metabolismo , Esbozos de los Miembros/química , Esbozos de los Miembros/metabolismo , Ratones/genética , Ratones/metabolismo , Ratones Mutantes , Datos de Secuencia Molecular , Somitos/química , Somitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA