Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Prostaglandins Other Lipid Mediat ; 172: 106836, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599513

RESUMEN

Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1ß and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsias Mioclónicas , Hipocampo , Canal de Sodio Activado por Voltaje NAV1.1 , Prostaglandinas , Convulsiones , Animales , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/patología , Ratones , Hipocampo/metabolismo , Hipocampo/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Convulsiones/metabolismo , Convulsiones/genética , Convulsiones/patología , Prostaglandinas/metabolismo , Masculino , Microglía/metabolismo , Microglía/patología
2.
J Clin Psychopharmacol ; 41(5): 525-533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34121064

RESUMEN

BACKGROUND: Cannabidiol (CBD), a major nonintoxicating constituent of cannabis, exhibits anxiolytic properties in preclinical and human studies and is of interest as a novel intervention for treating anxiety disorders. Existing first-line pharmacotherapies for these disorders include selective serotonin reuptake inhibitor and other antidepressants. Cannabidiol has well-described inhibitory action on cytochrome P450 (CYP450) drug-metabolizing enzymes and significant drug-drug interactions (DDIs) between CBD and various anticonvulsant medications (eg, clobazam) have been described in the treatment of epilepsy. Here, we examined the likelihood of DDIs when CBD is added to medications prescribed in the treatment of anxiety. METHODS: The effect of CBD on CYP450-mediated metabolism of the commonly used antidepressants fluoxetine, sertraline, citalopram, and mirtazapine were examined in vitro. Cannabidiol-citalopram interactions were also examined in vivo in patients (n = 6) with anxiety disorders on stable treatment with citalopram or escitalopram who received ascending daily doses of adjunctive CBD (200-800 mg) over 12 weeks in a recent clinical trial. RESULTS: Cannabidiol minimally affected the metabolism of sertraline, fluoxetine, and mirtazapine in vitro. However, CBD significantly inhibited CYP3A4 and CYP2C19-mediated metabolism of citalopram and its stereoisomer escitalopram at physiologically relevant concentrations, suggesting a possible in vivo DDI. In patients on citalopram or escitalopram, the addition of CBD significantly increased citalopram plasma concentrations, although it was uncertain whether this also increased selective serotonin reuptake inhibitor-mediated adverse events. CONCLUSIONS: Further pharmacokinetic examination of the interaction between CBD and citalopram/escitalopram is clearly warranted, and clinicians should be vigilant around the possibility of treatment-emergent adverse effects when CBD is introduced to patients taking these antidepressants.


Asunto(s)
Ansiolíticos/farmacocinética , Antidepresivos/farmacocinética , Trastornos de Ansiedad/tratamiento farmacológico , Cannabidiol/farmacocinética , Citalopram/farmacocinética , Adolescente , Ansiolíticos/efectos adversos , Cannabidiol/efectos adversos , Interacciones Farmacológicas , Femenino , Humanos , Técnicas In Vitro , Masculino , Adulto Joven
3.
J Nat Prod ; 84(5): 1469-1477, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33887133

RESUMEN

Cannabis sativa contains >120 phytocannabinoids, but our understanding of these compounds is limited. Determining the molecular modes of action of the phytocannabinoids may assist in their therapeutic development. Ligand-based virtual screening was used to suggest novel protein targets for phytocannabinoids. The similarity ensemble approach, a virtual screening tool, was applied to target identification for the phytocannabinoids as a class and predicted a possible interaction with the lactate dehydrogenase (LDH) family of enzymes. In order to evaluate this in silico prediction, a panel of 18 phytocannabinoids was screened against two LDH isozymes (LDHA and LDHB) in vitro. Cannabichromene (CBC) and Δ9-tetrahydrocannabinolic acid (Δ9-THCA) inhibited LDHA via a noncompetitive mode of inhibition with respect to pyruvate, with Ki values of 8.5 and 6.5 µM, respectively. In silico modeling was then used to predict the binding site for CBC and Δ9-THCA. Both were proposed to bind within the nicotinamide pocket, overlapping the binding site of the cofactor NADH, which is consistent with the noncompetitive modes of inhibition. Stemming from our in silico screen, CBC and Δ9-THCA were identified as inhibitors of LDHA, a novel molecular target that may contribute to their therapeutic effects.


Asunto(s)
Cannabinoides/farmacología , Dronabinol/análogos & derivados , Inhibidores Enzimáticos/farmacología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Cannabis/química , Bases de Datos de Compuestos Químicos , Dronabinol/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular
4.
J Biol Chem ; 294(15): 6157-6171, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30728247

RESUMEN

A number of epilepsy-causing mutations have recently been identified in the genes of the α1, ß3, and γ2 subunits comprising the γ-aminobutyric acid type A (GABAA) receptor. These mutations are typically dominant, and in certain cases, such as the α1 and ß3 subunits, they may lead to a mix of receptors at the cell surface that contain no mutant subunits, a single mutated subunit, or two mutated subunits. To determine the effects of mutations in a single subunit or in two subunits on receptor activation, we created a concatenated protein assembly that links all five subunits of the α1ß3γ2 receptor and expresses them in the correct orientation. We created nine separate receptor variants with a single-mutant subunit and four receptors containing two subunits of the γ2R323Q, ß3D120N, ß3T157M, ß3Y302C, and ß3S254F epilepsy-causing mutations. We found that the singly mutated γ2R323Q subunit impairs GABA activation of the receptor by reducing GABA potency. A single ß3D120N, ß3T157M, or ß3Y302C mutation also substantially impaired receptor activation, and two copies of these mutants within a receptor were catastrophic. Of note, an effect of the ß3S254F mutation on GABA potency depended on the location of this mutant subunit within the receptor, possibly because of the membrane environment surrounding the transmembrane region of the receptor. Our results highlight that precise functional genomic analyses of GABAA receptor mutations using concatenated constructs can identify receptors with an intermediate phenotype that contribute to epileptic phenotypes and that are potential drug targets for precision medicine approaches.


Asunto(s)
Membrana Celular , Epilepsia , Mutación Missense , Subunidades de Proteína , Receptores de GABA-A , Ácido gamma-Aminobutírico/metabolismo , Sustitución de Aminoácidos , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patología , Humanos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Xenopus laevis
5.
Epilepsia ; 60(11): 2224-2234, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31625159

RESUMEN

OBJECTIVE: Cannabidiol (CBD) has been approved by the US Food and Drug Administration (FDA) to treat intractable childhood epilepsies, such as Dravet syndrome and Lennox-Gastaut syndrome. However, the intrinsic anticonvulsant activity of CBD has been questioned due to a pharmacokinetic interaction between CBD and a first-line medication, clobazam. This recognized interaction has led to speculation that the anticonvulsant efficacy of CBD may simply reflect CBD augmenting clobazam exposure. The present study aimed to address the nature of the interaction between CBD and clobazam. METHODS: We examined whether CBD inhibits human CYP3A4 and CYP2C19 mediated metabolism of clobazam and N-desmethylclobazam (N-CLB), respectively, and performed studies assessing the effects of CBD on brain and plasma pharmacokinetics of clobazam in mice. We then used the Scn1a+/- mouse model of Dravet syndrome to examine how CBD and clobazam interact. We compared anticonvulsant effects of CBD-clobazam combination therapy to monotherapy against thermally-induced seizures, spontaneous seizures and mortality in Scn1a+/- mice. In addition, we used Xenopus oocytes expressing γ-aminobutyric acid (GABA)A receptors to investigate the activity of GABAA receptors when treated with CBD and clobazam together. RESULTS: CBD potently inhibited CYP3A4 mediated metabolism of clobazam and CYP2C19 mediated metabolism of N-CLB. Combination CBD-clobazam treatment resulted in greater anticonvulsant efficacy in Scn1a+/- mice, but only when an anticonvulsant dose of CBD was used. It is important to note that a sub-anticonvulsant dose of CBD did not promote greater anticonvulsant effects despite increasing plasma clobazam concentrations. In addition, we delineated a novel pharmacodynamic mechanism where CBD and clobazam together enhanced inhibitory GABAA receptor activation. SIGNIFICANCE: Our study highlights the involvement of both pharmacodynamic and pharmacokinetic interactions between CBD and clobazam that may contribute to its efficacy in Dravet syndrome.


Asunto(s)
Anticonvulsivantes/farmacocinética , Cannabidiol/farmacocinética , Clobazam/farmacocinética , Epilepsias Mioclónicas/metabolismo , Animales , Anticonvulsivantes/administración & dosificación , Cannabidiol/administración & dosificación , Clobazam/administración & dosificación , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas/fisiología , Quimioterapia Combinada , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Humanos , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética
6.
J Nat Prod ; 82(11): 3047-3055, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31686510

RESUMEN

Cannabis sativa produces a complex mixture of many bioactive molecules including terpenophenolic compounds known as phytocannabinoids. Phytocannabinoids come in neutral forms (e.g., Δ9-tetrahydrocannabinol, THC; cannabidiol, CBD; etc.) or as acid precursors, which are dominant in the plant (e.g., Δ9-tetrahydrocannabinolic acid, THCA; cannabidiolic acid, CBDA; etc.). There is increasing interest in unlocking the therapeutic applications of the phytocannabinoid acids; however, the present understanding of the basic pharmacology of phytocannabinoid acids is limited. Herein the brain and plasma pharmacokinetic profiles of CBDA, THCA, cannabichromenic acid (CBCA), cannabidivarinic acid (CBDVA), cannabigerolic acid (CBGA), and cannabigerovarinic acid (CBGVA) were examined following intraperitoneal administration in mice. Next it was examined whether CBDA was anticonvulsant in a mouse model of Dravet syndrome (Scn1aRX/+ mice). All the phytocannabinoid acids investigated were rapidly absorbed with plasma tmax values of between 15 and 45 min and had relatively short half-lives (<4 h). The brain-plasma ratios for the acids were very low at ≤0.04. However, when CBDA was administered in an alternate Tween 80-based vehicle, it exhibited a brain-plasma ratio of 1.9. The anticonvulsant potential of CBDA was examined using this vehicle, and it was found that CBDA significantly increased the temperature threshold at which the Scn1aRX/+ mice had a generalized tonic-clonic seizure.


Asunto(s)
Anticonvulsivantes/farmacología , Anticonvulsivantes/farmacocinética , Cannabinoides/farmacología , Cannabinoides/farmacocinética , Epilepsias Mioclónicas/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Epilepsias Mioclónicas/genética , Epilepsia Tónico-Clónica/tratamiento farmacológico , Epilepsia Tónico-Clónica/genética , Femenino , Semivida , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.1/genética
7.
PLoS Genet ; 12(10): e1006398, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27768696

RESUMEN

A substantial number of mutations have been identified in voltage-gated sodium channel genes that result in various forms of human epilepsy. SCN1A mutations result in a spectrum of severity ranging from mild febrile seizures to Dravet syndrome, an infant-onset epileptic encephalopathy. Dravet syndrome patients experience multiple seizures types that are often refractory to treatment, developmental delays, and elevated risk for SUDEP. The same sodium channel mutation can produce epilepsy phenotypes of varying clinical severity. This suggests that other factors, including genetic, modify the primary mutation and change disease severity. Mouse models provide a useful tool in studying the genetic basis of epilepsy. The mouse strain background can alter phenotype severity, supporting a contribution of genetic modifiers in epilepsy. The Scn1a+/- mouse model has a strain-dependent epilepsy phenotype. Scn1a+/- mice on the 129S6/SvEvTac (129) strain have a normal phenotype and lifespan, while [129xC57BL/6J]F1-Scn1a+/- mice experience spontaneous seizures, hyperthermia-induced seizures and high rates of premature death. We hypothesize the phenotypic differences are due to strain-specific genetic modifiers that influence expressivity of the Scn1a+/- phenotype. Low resolution mapping of Scn1a+/- identified several Dravet syndrome modifier (Dsm) loci responsible for the strain-dependent difference in survival. One locus of interest, Dsm1 located on chromosome 5, was fine mapped to a 9 Mb region using interval specific congenics. RNA-Seq was then utilized to identify candidate modifier genes within this narrowed region. Three genes with significant total gene expression differences between 129S6/SvEvTac and [129xC57BL/6J]F1 were identified, including the GABAA receptor subunit, Gabra2. Further analysis of Gabra2 demonstrated allele-specific expression. Pharmological manipulation by clobazam, a common anticonvulsant with preferential affinity for the GABRA2 receptor, revealed dose-dependent protection against hyperthermia-induced seizures in Scn1a+/- mice. These findings support Gabra2 as a genetic modifier of the Scn1a+/- mouse model of Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsia/genética , Genes Modificadores/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Receptores de GABA-A/genética , Animales , Benzodiazepinas/administración & dosificación , Mapeo Cromosómico , Cromosomas/genética , Clobazam , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/patología , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Regulación de la Expresión Génica , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Noqueados , Mutación , Fenotipo , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/patología
9.
Anal Chem ; 88(17): 8604-9, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27467208

RESUMEN

The competition of two drugs for the same metabolizing enzyme is a common mechanism for drug-drug interactions that can lead to altered kinetics in drug metabolism and altered elimination rates in vivo. With the prevalence of multidrug therapy, there is great potential for serious drug-drug interactions and adverse drug reactions. In an effort to prevent adverse drug reactions, the FDA mandates the evaluation of the potential for metabolic inhibition by every new chemical entity. Conventional methods for assaying drug metabolism (e.g., those based on HPLC) have been established for measuring drug-drug interactions; however, they are low-throughput. Here we describe an approach to measure the catalytic activity of CYP2C9 using the high-throughput technique self-assembled monolayers for matrix-assisted laser desorption-ionization (SAMDI) mass spectrometry. We measured the kinetics of CYP450 metabolism of the substrate, screened a set of drugs for inhibition of CYP2C9 and determined the Ki values for inhibitors. The throughput of this platform may enable drug metabolism and drug-drug interactions to be interrogated at a scale that cannot be achieved with current methods.


Asunto(s)
Citocromo P-450 CYP2C9/metabolismo , Hipoglucemiantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tolbutamida/metabolismo , Interacciones Farmacológicas , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Cinética , Estructura Molecular , Tolbutamida/química , Tolbutamida/farmacología
10.
Epilepsia ; 55(8): 1274-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24862204

RESUMEN

OBJECTIVE: Evidence from basic neurophysiology and molecular genetics has implicated persistent sodium current conducted by voltage-gated sodium (NaV ) channels as a contributor to the pathogenesis of epilepsy. Many antiepileptic drugs target NaV channels and modulate neuronal excitability, mainly by a use-dependent block of transient sodium current, although suppression of persistent current may also contribute to the efficacy of these drugs. We hypothesized that a drug or compound capable of preferential inhibition of persistent sodium current would have antiepileptic activity. METHODS: We examined the antiepileptic activity of two selective persistent sodium current blockers ranolazine, a U.S. Food and Drug Administration (FDA)-approved drug for treatment of angina pectoris, and GS967, a novel compound with more potent effects on persistent current, in the epileptic Scn2a(Q54) mouse model. We also examined the effect of GS967 in the maximal electroshock model and evaluated effects of the compound on neuronal excitability, propensity for hilar neuron loss, development of mossy fiber sprouting, and survival of Scn2a(Q54) mice. RESULTS: We found that ranolazine was capable of reducing seizure frequency by approximately 50% in Scn2a(Q54) mice. The more potent persistent current blocker GS967 reduced seizure frequency by >90% in Scn2a(Q54) mice and protected against induced seizures in the maximal electroshock model. GS967 greatly attenuated abnormal spontaneous action potential firing in pyramidal neurons acutely isolated from Scn2a(Q54) mice. In addition to seizure suppression in vivo, GS967 treatment greatly improved the survival of Scn2a(Q54) mice, prevented hilar neuron loss, and suppressed the development of hippocampal mossy fiber sprouting. SIGNIFICANCE: Our findings indicate that the selective persistent sodium current blocker GS967 has potent antiepileptic activity and that this compound could inform development of new agents.


Asunto(s)
Acetanilidas/uso terapéutico , Anticonvulsivantes/uso terapéutico , Piperazinas/uso terapéutico , Piridinas/uso terapéutico , Convulsiones/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/uso terapéutico , Triazoles/uso terapéutico , Acetanilidas/farmacología , Animales , Anticonvulsivantes/farmacología , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.2/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Piperazinas/farmacología , Piridinas/farmacología , Ranolazina , Convulsiones/genética , Convulsiones/fisiopatología , Bloqueadores de los Canales de Sodio/farmacología , Triazoles/farmacología
11.
Epilepsia Open ; 8(3): 776-784, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36811143

RESUMEN

OBJECTIVE: Ictal vocalizations have shown diagnostic utility in epilepsy patients. Audio recordings of seizures have also been used for seizure detection. The present study aimed to determine whether generalized tonic-clonic seizures in the Scn1a+/- mouse model of Dravet syndrome are associated with either audible mouse squeaks or ultrasonic vocalizations. METHODS: Acoustic recordings were captured from group-housed Scn1a+/- mice undergoing video-monitoring to quantify spontaneous seizure frequency. We generated audio clips (n = 129) during a generalized tonic-clonic seizure (GTCS) that included 30 seconds immediately prior to the GTCS (preictal) and 30 seconds following the conclusion of the seizure (postictal). Nonseizure clips (n = 129) were also exported from the acoustic recordings. A blinded reviewer manually reviewed the audio clips, and vocalizations were identified as either an audible (<20 kHz) mouse squeak or ultrasonic (>20 kHz). RESULTS: Spontaneous GTCS in Scn1a+/- mice were associated with a significantly higher number of total vocalizations. The number of audible mouse squeaks was significantly greater with GTCS activity. Nearly all (98%) the seizure clips contained ultrasonic vocalizations, whereas ultrasonic vocalizations were present in only 57% of nonseizure clips. The ultrasonic vocalizations emitted in the seizure clips were at a significantly higher frequency and were nearly twice as long in duration as those emitted in the nonseizure clips. Audible mouse squeaks were primarily emitted during the preictal phase. The greatest number of ultrasonic vocalizations was detected during the ictal phase. SIGNIFICANCE: Our study shows that ictal vocalizations are exhibited by Scn1a+/- mice. Quantitative audio analysis could be developed as a seizure detection tool for the Scn1a+/- mouse model of Dravet syndrome.


Asunto(s)
Electroencefalografía , Epilepsias Mioclónicas , Animales , Ratones , Epilepsias Mioclónicas/diagnóstico , Epilepsias Mioclónicas/genética , Convulsiones/diagnóstico , Modelos Animales de Enfermedad , Canal de Sodio Activado por Voltaje NAV1.1/genética
12.
Cannabis Cannabinoid Res ; 8(3): 495-504, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36269656

RESUMEN

Introduction: The endocannabinoid system contributes to the homeostatic response to seizure activity in epilepsy, a disease of brain hyperexcitability. Indeed, studies using conventional epilepsy models have shown that seizures increase endocannabinoids in the brain. However, it is unknown whether endocannabinoids and structurally related fatty acid amides and monoacylglycerols are similarly released in response to acute seizures in animal models of drug-resistant epilepsy. Therefore, in this study, we investigated whether a hyperthermia-induced seizure increased concentrations of endocannabinoids and related signaling lipids in the Scn1a+/- mouse model of Dravet syndrome. Materials and Methods: We compared hippocampal concentrations of the major endocannabinoids and related monoglycerols and N-acylethanolamines in wild-type mice, naïve Scn1a+/- mice, and Scn1a+/- mice primed with a single, hyperthermia-induced, generalized tonic-clonic seizure. Samples were collected 5 and 60 min following the seizure and then analyzed with LC-MS/MS. Results: We found that a hyperthermia-induced seizure in Scn1a+/- mice did not affect hippocampal concentrations of the major endocannabinoids, 2-AG and anandamide, or the N-acylethanolamines studied, although the sampling of tissue 5 min postseizure may have been too late to capture any effect on these lipids. Heterozygous deletion of Scn1a alone did not affect these lipid signaling molecules. Notably, however, we found that a hyperthermia-induced seizure significantly increased hippocampal concentrations of the monoacylglycerols, 2-linoleoyl glycerol (2-LG) and 1-linoleoyl glycerol (1-LG), in Scn1a+/- mice. Conclusions: Our results show the unprecedented elevation of the lesser-studied endocannabinoid-related monoacylglycerols, 2-LG and 1-LG, following a hyperthermia-induced seizure in a mouse model of Dravet syndrome. Future research is needed to comprehensively explore the function of these lipid signaling molecules during seizure activity and whether their actions can be exploited to develop new therapeutics.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Hipertermia Inducida , Convulsiones Febriles , Ratones , Animales , Endocannabinoides , Glicerol , Canal de Sodio Activado por Voltaje NAV1.1/genética , Cromatografía Liquida , Monoglicéridos , Espectrometría de Masas en Tándem , Epilepsias Mioclónicas/genética , Convulsiones , Hipocampo , Modelos Animales de Enfermedad
13.
Front Physiol ; 14: 1081186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891145

RESUMEN

Introduction: Cannabis contains cannabidiol (CBD), the main non-psychoactive phytocannabinoid, but also many other phytocannabinoids that have therapeutic potential in the treatment of epilepsy. Indeed, the phytocannabinoids cannabigerolic acid (CBGA), cannabidivarinic acid (CBDVA), cannabichromenic acid (CBCA) and cannabichromene (CBC) have recently been shown to have anti-convulsant effects in a mouse model of Dravet syndrome (DS), an intractable form of epilepsy. Recent studies demonstrate that CBD inhibits voltage-gated sodium channel function, however, whether these other anti-convulsant phytocannabinoids affect these classic epilepsy drug-targets is unknown. Voltage-gated sodium (NaV) channels play a pivotal role in initiation and propagation of the neuronal action potential and NaV1.1, NaV1.2, NaV1.6 and NaV1.7 are associated with the intractable epilepsies and pain conditions. Methods: In this study, using automated-planar patch-clamp technology, we assessed the profile of the phytocannabinoids CBGA, CBDVA, cannabigerol (CBG), CBCA and CBC against these human voltage-gated sodium channels subtypes expressed in mammalian cells and compared the effects to CBD. Results: CBD and CBGA inhibited peak current amplitude in the low micromolar range in a concentration-dependent manner, while CBG, CBCA and CBC revealed only modest inhibition for this subset of sodium channels. CBDVA inhibited NaV1.6 peak currents in the low micromolar range in a concentration-dependent fashion, while only exhibiting modest inhibitory effects on NaV1.1, NaV1.2, and NaV1.7 channels. CBD and CBGA non-selectively inhibited all channel subtypes examined, whereas CBDVA was selective for NaV1.6. In addition, to better understand the mechanism of this inhibition, we examined the biophysical properties of these channels in the presence of each cannabinoid. CBD reduced NaV1.1 and NaV1.7 channel availability by modulating the voltage-dependence of steady-state fast inactivation (SSFI, V0.5 inact), and for NaV1.7 channel conductance was reduced. CBGA also reduced NaV1.1 and NaV1.7 channel availability by shifting the voltage-dependence of activation (V0.5 act) to a more depolarized potential, and for NaV1.7 SSFI was shifted to a more hyperpolarized potential. CBDVA reduced channel availability by modifying conductance, SSFI and recovery from SSFI for all four channels, except for NaV1.2, where V0.5 inact was unaffected. Discussion: Collectively, these data advance our understanding of the molecular actions of lesser studied phytocannabinoids on voltage-gated sodium channel proteins.

14.
PLoS One ; 18(1): e0280842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36701411

RESUMEN

A purified preparation of cannabidiol (CBD), a cannabis constituent, has been approved for the treatment of intractable childhood epilepsies such as Dravet syndrome. Extensive pharmacological characterization of CBD shows activity at numerous molecular targets but its anticonvulsant mechanism(s) of action is yet to be delineated. Many suggest that the anticonvulsant action of CBD is the result of G protein-coupled receptor 55 (GPR55) inhibition. Here we assessed whether Gpr55 contributes to the strain-dependent seizure phenotypes of the Scn1a+/- mouse model of Dravet syndrome. The Scn1a+/- mice on a 129S6/SvEvTac (129) genetic background have no overt phenotype, while those on a [129 x C57BL/6J] F1 background exhibit a severe phenotype that includes hyperthermia-induced seizures, spontaneous seizures and reduced survival. We observed greater Gpr55 transcript expression in the cortex and hippocampus of mice on the seizure-susceptible F1 background compared to those on the seizure-resistant 129 genetic background, suggesting that Gpr55 might be a genetic modifier of Scn1a+/- mice. We examined the effect of heterozygous genetic deletion of Gpr55 and pharmacological inhibition of GPR55 on the seizure phenotypes of F1.Scn1a+/- mice. Heterozygous Gpr55 deletion and inhibition of GPR55 with CID2921524 did not affect the temperature threshold of a thermally-induced seizure in F1.Scn1a+/- mice. Neither was there an effect of heterozygous Gpr55 deletion observed on spontaneous seizure frequency or survival of F1.Scn1a+/- mice. Our results suggest that GPR55 antagonism may not be a suitable anticonvulsant target for Dravet syndrome drug development programs, although future research is needed to provide more definitive conclusions.


Asunto(s)
Cannabidiol , Epilepsias Mioclónicas , Hipertermia Inducida , Convulsiones Febriles , Ratones , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.1/genética , Ratones Endogámicos C57BL , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Convulsiones Febriles/tratamiento farmacológico , Convulsiones Febriles/genética , Receptores de Cannabinoides/metabolismo
15.
Front Physiol ; 14: 1086243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082241

RESUMEN

Background: T-type Ca2+ channels (Cav3) represent emerging therapeutic targets for a range of neurological disorders, including epilepsy and pain. To aid the development and optimisation of new therapeutics, there is a need to identify novel chemical entities which act at these ion channels. A number of synthetic cannabinoid receptor agonists (SCRAs) have been found to exhibit activity at T-type channels, suggesting that cannabinoids may provide convenient chemical scaffolds on which to design novel Cav3 inhibitors. However, activity at cannabinoid type 1 (CB1) receptors can be problematic because of central and peripheral toxicities associated with potent SCRAs. The putative SCRA MEPIRAPIM and its analogues were recently identified as Cav3 inhibitors with only minimal activity at CB1 receptors, opening the possibility that this scaffold may be exploited to develop novel, selective Cav3 inhibitors. Here we present the pharmacological characterisation of SB2193 and SB2193F, two novel Cav3 inhibitors derived from MEPIRAPIM. Methods: The potency of SB2193 and SB2193F was evaluated in vitro using a fluorometric Ca2+ flux assay and confirmed using whole-cell patch-clamp electrophysiology. In silico docking to the cryo-EM structure of Cav3.1 was also performed to elucidate structural insights into T-type channel inhibition. Next, in vivo pharmacokinetic parameters in mouse brain and plasma were determined using liquid chromatography-mass spectroscopy. Finally, anticonvulsant activity was assayed in established genetic and electrically-induced rodent seizure models. Results: Both MEPIRAPIM derivatives produced potent inhibition of Cav3 channels and were brain penetrant, with SB2193 exhibiting a brain/plasma ratio of 2.7. SB2193 was further examined in mouse seizure models where it acutely protected against 6 Hz-induced seizures. However, SB2193 did not reduce spontaneous seizures in the Scn1a +/- mouse model of Dravet syndrome, nor absence seizures in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). Surprisingly, SB2193 appeared to increase the incidence and duration of spike-and-wave discharges in GAERS animals over a 4 h recording period. Conclusion: These results show that MEPIRAPIM analogues provide novel chemical scaffolds to advance Cav3 inhibitors against certain seizure types.

16.
J Cannabis Res ; 4(1): 30, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689251

RESUMEN

BACKGROUND: Purified cannabidiol (CBD), a non-psychoactive phytocannabinoid, has gained regulatory approval to treat intractable childhood epilepsies. Despite this, artisanal and commercial CBD-dominant hemp-based products continue to be used by epilepsy patients. Notably, the CBD doses used in these latter products are much lower than that found to be effective in reducing seizures in clinical trials with purified CBD. This might be because these CBD-dominant hemp products contain other bioactive compounds, including phytocannabinoids and terpenes, which may exert unique effects on epilepsy-relevant drug targets. Voltage-gated sodium (NaV) channels are vital for initiation of neuronal action potential propagation and genetic mutations in these channels result in epilepsy phenotypes. Recent studies suggest that NaV channels are inhibited by purified CBD. However, the effect of cannabis-based products on the function of NaV channels is unknown. METHODS: Using automated-planar patch-clamp technology, we profile a hemp-derived nutraceutical product (NP) against human NaV1.1-NaV1.8 expressed in mammalian cells to examine effects on the biophysical properties of channel conductance, steady-state fast inactivation and recovery from fast inactivation. RESULTS: NP modifies peak current amplitude of the NaV1.1-NaV1.7 subtypes and has variable effects on the biophysical properties for all channel subtypes tested. NP potently inhibits NaV channels revealing half-maximal inhibitory concentration (IC50) values of between 1.6 and 4.2 µg NP/mL. Purified CBD inhibits NaV1.1, NaV1.2, NaV1.6 and NaV1.7 to reveal IC50 values in the micromolar range. The CBD content of the product equates to IC50 values (93-245 nM), which are at least an order of magnitude lower than purified CBD. Unlike NP, hemp seed oil vehicle alone did not inhibit NaV channels, suggesting that the inhibitory effects of NP are independent of hemp seed oil. CONCLUSIONS: This CBD-dominant NP potently inhibits NaV channels. Future study of the individual elements of NP, including phytocannabinoids and terpenes, may reveal a potent individual component or that its components interact to modulate NaV channels.

17.
Eur J Pharmacol ; 922: 174836, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306000

RESUMEN

Cannabichromene (CBC) and cannabichromenic acid (CBCA) are cannabis constituents currently under evaluation for their therapeutic potential, but their pharmacological properties have not been thoroughly investigated. The most studied ATP-binding cassette (ABC) transporters, ABC subfamily G member 2 (ABCG2) and ABC subfamily B member 1 (ABCB1) limit absorption of substrate drugs in the gut and brain. Moreover, inhibitors of these proteins can lead to clinically significant drug-drug interactions (DDIs). The current study sought to examine whether CBC and CBCA affect ABCB1 and ABCG2 to advance their basic pharmacological characterisation. The plant cannabinoids CBC and CBCA were screened in vitro in a bidirectional transport assay to determine whether they were substrates and/or inhibitors of ABCB1 and ABCG2. Transwell assays with polarized epithelial Madin-Darby Canine Kidney II (MDCK) cells expressing ABCB1 or ABCG2 were used. Samples were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS). CBCA was found to be an ABCB1 substrate, but not an ABCG2 substrate. CBC was not a substrate of either transporter. Neither CBCA nor CBC inhibited ABCB1 transport of prazosin or ABCG2 transport of digoxin. In silico molecular docking suggested CBCA binds ABCB1 in the access tunnel and the central binding pocket. CBC, an agent with anticonvulsant, anti-inflammatory and anti-depressant properties, is not a substrate or inhibitor of ABCB1 or ABCG2, which is favourable to its therapeutic development. CBCA is an ABCB1 substrate in vitro which might contribute to its poor absorption. These findings provide important basic pharmacological data to assist the therapeutic development of these cannabis constituents.


Asunto(s)
Cannabinoides , Cannabis , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Cannabinoides/farmacología , Cannabis/metabolismo , Cromatografía Liquida , Perros , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem
18.
Cannabis Cannabinoid Res ; 7(1): 46-57, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33998858

RESUMEN

Introduction: The cannabinoid Δ9-tetrahydrocannabinolic acid (Δ9-THCA) has long been suggested in review articles and anecdotal reports to be anticonvulsant; yet, there is scant evidence supporting this notion. The objective of this study was to interrogate the anticonvulsant potential of Δ9-THCA in various seizure models-the Scn1a+/- mouse model of Dravet syndrome, the 6-Hz model of psychomotor seizures and the maximal electroshock (MES) model of generalized tonic-clonic seizures. Materials and Methods: We examined the effect of acute Δ9-THCA treatment against hyperthermia-induced seizures, and subchronic treatment on spontaneous seizures and survival in the Scn1a+/- mice. We also studied the effect of acute Δ9-THCA treatment on the critical current thresholds in the 6-Hz and MES tests using outbred Swiss mice. Highly purified Δ9-THCA was used in the studies or a mixture of Δ9-THCA and Δ9-THC. Results: We observed mixed anticonvulsant and proconvulsant effects of Δ9-THCA across the seizure models. Highly pure Δ9-THCA did not affect hyperthermia-induced seizures in Scn1a+/- mice. A Δ9-THCA/Δ9-THC mixture was anticonvulsant in the 6-Hz threshold test, but purified Δ9-THCA and Δ9-THC had no effect. Conversely, both Δ9-THCA and Δ9-THC administered individually were proconvulsant in the MES threshold test but had no effect when administered as a Δ9-THCA/Δ9-THC mixture. The Δ9-THCA/Δ9-THC mixture, however, increased spontaneous seizure severity and increased mortality of Scn1a+/- mice. Discussion: The anticonvulsant profile of Δ9-THCA was variable depending on the seizure model used and presence of Δ9-THC. Because of the unstable nature of Δ9-THCA, further exploration of Δ9-THCA through formal anticonvulsant drug development is problematic without stabilization. Future studies may better focus on determining the mechanisms by which combined Δ9-THCA and Δ9-THC alters seizure thresholds, as this may uncover novel targets for the control of refractory partial seizures.


Asunto(s)
Dronabinol , Epilepsias Mioclónicas , Convulsiones , Animales , Anticonvulsivantes/farmacología , Dronabinol/análogos & derivados , Dronabinol/farmacología , Epilepsias Mioclónicas/tratamiento farmacológico , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/tratamiento farmacológico
19.
Cannabis Cannabinoid Res ; 7(3): 304-317, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33998860

RESUMEN

Introduction: Legalization of medicinal cannabis around the world has led to an increase in the use of commercial cannabis-based products in the community. These cannabis-based products are being used in combination with conventional drugs to treat a variety of health conditions. Moreover, recreational cannabis-based products may be used in combination with other drugs. In this setting, there is increased potential for drug-drug interactions (DDIs) involving commercial cannabis-based products. Since DDIs can lead to serious adverse events, drug regulatory bodies require that every investigational drug be evaluated for DDI potential at metabolic enzymes and transporters. However, this seldom occurs for cannabis-based products due to legislation in many jurisdictions allowing a direct pathway to market. This study aimed to examine the inhibitory potential of three commercially available cannabis-based products at human ATP-binding cassette (ABC) and solute-carrier (SLC) transporters. Materials and Methods: Three commercial cannabis-based products (Spectrum Yellow™, Tweed Argyle, and Spectrum Red™) that contain differing concentrations of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) were evaluated for DDI potential at 12 drug transporters. HEK293 cells or vesicles expressing human ABC transporters (ABCB1, ABCC2, ABCG2, or ABCB11) and SLC transporters (SLC22A1, SLC22A2, SLC22A6, SLC22A8, SLCO1B1, SLCO1B3, SLC47A1, and SLC47A2) were used to measure transporter function. Results: Spectrum Yellow and Tweed Argyle inhibited ABCG2 transporter function. The IC50 value of Spectrum Yellow based on CBD and Δ9-THC content was 4.5 µM for CBD and 0.20 µM for Δ9-THC, and the IC50 value of Tweed Argyle was 9.3 µM for CBD and 6.0 µM for Δ9-THC. Tweed Argyle also inhibited ABCB11 transporter function with an IC50 value of 11.9 µM for CBD and 7.7 µM for Δ9-THC. SLC22A6, SLC22A1, SLC22A2, SLCO1B1, and SLCO1B3 transporter functions were modestly inhibited by high concentrations of the cannabis-based products. The three cannabis-based products did not inhibit ABCB1, ABCC2, SLC47A1, SLC47A2, or SLC22A8 transporters. Discussion: Novel findings were that the cannabis-based products inhibited ABCB11, SLC22A6, SLC22A1, SLC22A2, SLCO1B1, and SLCO1B3 (although modestly in most instances). Spectrum Yellow and Tweed Argyle potently inhibited ABCG2, and future in vivo DDI studies could be conducted to assess whether cannabis products affect the pharmacokinetics of medications that are ABCG2 substrates.


Asunto(s)
Cannabis , Alucinógenos , Adenosina Trifosfato , Agonistas de Receptores de Cannabinoides , Cannabis/química , Dronabinol/farmacocinética , Células HEK293 , Alucinógenos/farmacología , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , Proteínas de Transporte de Membrana/metabolismo
20.
Neuropharmacology ; 205: 108897, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822817

RESUMEN

Dravet syndrome is a catastrophic childhood epilepsy with multiple seizure types that are refractory to treatment. The endocannabinoid system regulates neuronal excitability so a deficit in endocannabinoid signaling could lead to hyperexcitability and seizures. Thus, we sought to determine whether a deficiency in the endocannabinoid system might contribute to seizure phenotypes in a mouse model of Dravet syndrome and whether enhancing endocannabinoid tone is anticonvulsant. Scn1a+/- mice model the clinical features of Dravet syndrome: hyperthermia-induced seizures, spontaneous seizures and reduced survival. We examined whether Scn1a+/- mice exhibit deficits in the endocannabinoid system by measuring brain cannabinoid receptor expression and endocannabinoid concentrations. Next, we determined whether pharmacologically enhanced endocannabinoid tone was anticonvulsant in Scn1a+/- mice. We used GAT229, a positive allosteric modulator of the cannabinoid (CB1) receptor, and ABX-1431, a compound that inhibits the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG). The Scn1a+/- phenotype is strain-dependent with mice on a 129S6/SvEvTac (129) genetic background having no overt phenotype and those on an F1 (129S6/SvEvTac x C57BL/6J) background exhibiting a severe epilepsy phenotype. We observed lower brain cannabinoid CB1 receptor expression in the seizure-susceptible F1 compared to seizure-resistant 129 strain, suggesting an endocannabinoid deficiency might contribute to seizure susceptibility. GAT229 and ABX-1431 were anticonvulsant against hyperthermia-induced seizures. However, subchronic ABX1431 treatment increased spontaneous seizure frequency despite reducing seizure severity. Cnr1 is a putative genetic modifier of epilepsy in the Scn1a+/- mouse model of Dravet syndrome. Compounds that increase endocannabinoid tone could be developed as novel treatments for Dravet syndrome.


Asunto(s)
Anticonvulsivantes/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/metabolismo , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/metabolismo , Receptor Cannabinoide CB1/agonistas , Animales , Modelos Animales de Enfermedad , Endocannabinoides/deficiencia , Indoles/farmacología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Piperazinas/farmacología , Pirrolidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA