Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nanotechnology ; 32(26)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33601363

RESUMEN

Layered two-dimensional (2D) materials such as MoS2have attracted much attention for nano- and opto-electronics. Recently, intercalation (e.g. of ions, atoms, or molecules) has emerged as an effective technique to modulate material properties of such layered 2D films reversibly. We probe both the electrical and thermal properties of Li-intercalated bilayer MoS2nanosheets by combining electrical measurements and Raman spectroscopy. We demonstrate reversible modulation of carrier density over more than two orders of magnitude (from 0.8 × 1012to 1.5 × 1014cm-2), and we simultaneously obtain the thermal boundary conductance between the bilayer and its supporting SiO2substrate for an intercalated system for the first time. This thermal coupling can be reversibly modulated by nearly a factor of eight, from 14 ± 4.0 MW m-2K-1before intercalation to 1.8 ± 0.9 MW m-2K-1when the MoS2is fully lithiated. These results reveal electrochemical intercalation as a reversible tool to modulate and control both electrical and thermal properties of 2D layers.

2.
Phys Chem Chem Phys ; 22(5): 2738-2742, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31960012

RESUMEN

The structural dynamics of Cu catalyst regeneration from Cu2O under methanol is poorly understood. In situ Environmental TEM on Cu(100)-supported Cu2O islands reveals a transition from anisotropic to isotropic shrinking during reduction. Two-stage reduction is statistically supported and explained by preferential methanol reactivity on Cu2O nano-islands with DFT simulations.

3.
J Chem Phys ; 152(15): 154701, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32321274

RESUMEN

We show that a deep-learning neural network potential (DP) based on density functional theory (DFT) calculations can well describe Cu-Zr materials, an example of a binary alloy system, that can coexist in as ordered intermetallic and as an amorphous phase. The complex phase diagram for Cu-Zr makes it a challenging system for traditional atomistic force-fields that cannot accurately describe the different properties and phases. Instead, we show that a DP approach using a large database with ∼300k configurations can render results generally on par with DFT. The training set includes configurations of pristine and bulk elementary metals and intermetallic structures in the liquid and solid phases in addition to slab and amorphous configurations. The DP model was validated by comparing bulk properties such as lattice constants, elastic constants, bulk moduli, phonon spectra, and surface energies to DFT values for identical structures. Furthermore, we contrast the DP results with values obtained using well-established two embedded atom method potentials. Overall, our DP potential provides near DFT accuracy for the different Cu-Zr phases but with a fraction of its computational cost, thus enabling accurate computations of realistic atomistic models, especially for the amorphous phase.

4.
Phys Chem Chem Phys ; 20(9): 6440-6449, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29445805

RESUMEN

In situ/operando studies of a heterogeneous catalyst are particularly valuable for achieving a fundamental understanding of catalytic mechanisms at a molecular level by establishing a correlation between the observed catalytic performance and the corresponding surface chemistry during catalysis. Herein, CO oxidation on cobalt oxides was studied via ambient pressure X-ray photoelectron spectroscopy (AP-XPS). During CO oxidation on CoO in the temperature range of 140-180 °C, the active surface phase of CoO progressively transforms to Co3O4. Kinetic studies of CO oxidation on the surface phase CoO at 80-120 °C and on the formed Co3O4 at 160-220 °C show that CoO and Co3O4 exhibit different activation barriers: 49.3 kJ mol-1 for CoO and 36.9 kJ mol-1 for Co3O4. This study demonstrates the transition of the active surface phase of a transition metal oxide-based catalyst under catalytic conditions with no change in the bulk phase of the catalyst.

5.
J Am Chem Soc ; 139(49): 17767-17770, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29185732

RESUMEN

Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 106 M-1 cm-1) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.

6.
Small ; 12(5): 668-77, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26681255

RESUMEN

Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN. These results suggest that control over soft nanoparticle shape will provide an avenue for optimization of particle-based contrast agents as biodiagnostics. The polycatechol nanoparticles are proposed as suitable for preclinical investigations into their viability as gadolinium-free, safe, and effective imaging agents for MRI contrast enhancement.


Asunto(s)
Catecoles/química , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Polímeros/química , Células HeLa , Humanos , Fenómenos Magnéticos , Micelas , Nanopartículas/ultraestructura , Espectroscopía de Protones por Resonancia Magnética
7.
Inorg Chem ; 55(1): 114-24, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26679038

RESUMEN

A series of 10 tetradentate 1-hydroxy-pyridin-2-one (1,2-HOPO) ligands and corresponding eight-coordinated photoluminescent Eu(III) and Sm(III) complexes were prepared. Generally, the ligands differ by the linear (nLI) aliphatic linker length, from 2 to 8 methylene units between the bidentate 1,2-HOPO chelator units. The photoluminescent quantum yields (Φtot) were found to vary with the linker length, and the same trend was observed for the Eu(III) and Sm(III) complexes. The 2LI and 5LI bridged complexes are the brightest (Φtotxε). The change in ligand wrapping pattern between 2LI and 5LI complexes observed by X-ray diffraction (XRD) is further supported by density functional theory (DFT) calculations. The bimodal Φtot trends of the Eu(III) and Sm(III) complexes are rationalized by the change in ligand wrapping pattern as the bridge (nLI) is increased in length.


Asunto(s)
Europio/química , Samario/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Ligandos , Luminiscencia , Espectroscopía de Protones por Resonancia Magnética , Soluciones , Agua/química
8.
J Am Chem Soc ; 137(45): 14423-9, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26544649

RESUMEN

Small gold nanoparticles (∼1.4-2.2 nm core diameters) exist at an exciting interface between molecular and metallic electronic structures. These particles have the potential to elucidate fundamental physical principles driving nanoscale phenomena and to be useful in a wide range of applications. Here, we study the optoelectronic properties of aqueous, phosphine-terminated gold nanoparticles (core diameter = 1.7 ± 0.4 nm) after ligand exchange with a variety of sulfur-containing molecules. No emission is observed from these particles prior to ligand exchange, however the introduction of sulfur-containing ligands initiates photoluminescence. Further, small changes in sulfur substituents produce significant changes in nanoparticle photoluminescence features including quantum yield, which ranges from 0.13 to 3.65% depending on substituent. Interestingly, smaller ligands produce the most intense, highest energy, narrowest, and longest-lived emissions. Radiative lifetime measurements for these gold nanoparticle conjugates range from 59 to 2590 µs, indicating that even minor changes to the ligand substituent fundamentally alter the electronic properties of the luminophore itself. These results isolate the critical role of surface chemistry in the photoluminescence of small metal nanoparticles and largely rule out other mechanisms such as discrete (Au(I)-S-R)n impurities, differences in ligand densities, and/or core diameters. Taken together, these experiments provide important mechanistic insight into the relationship between gold nanoparticle near-infrared emission and pendant ligand architectures, as well as demonstrate the pivotal role of metal nanoparticle surface chemistry in tuning and optimizing emergent optoelectronic features from these nanostructures.

9.
J Am Chem Soc ; 137(50): 15852-8, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26670347

RESUMEN

We report the identification, description, and role of multinuclear metal-thiolate complexes in aqueous Au-Cu nanoparticle syntheses. The structure of these species was characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy techniques. The observed structures were found to be in good agreement with thermodynamic growth trends predicted by first-principles calculations. The presence of metal-thiolate complexes is then shown to be critical for the formation of alloyed Au-Cu architectures in the small nanoparticle regime (diameter ∼2 nm). In the absence of mixed metal-thiolate precursors, nanoparticles form with a Cu-S shell and a Au-rich interior. Taken together, these results demonstrate that prenucleation species, which are discrete molecular precursors distinct from both initial reagents and final particle products, may provide an important new synthetic route to control final metal nanoparticle composition and composition architectures.

10.
J Am Chem Soc ; 136(22): 7873-6, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24856921

RESUMEN

Nanoscale platinum materials are essential components in many technologies, including catalytic converters and fuel cells. Combining Pt with other metals can enhance its performance and/or decrease the cost of the technology, and a wide range of strategies have been developed to capitalize on these advantages. However, wet chemical synthesis of Pt-containing nanoparticles (NPs) is challenging due to the diverse metal segregation and metal-metal redox processes possible under closely related experimental conditions. Here, we elucidate the relationship between Pt(IV) speciation and the formation of well-known NP motifs, including frame-like and core-shell morphologies, in Au-Pt systems. We leverage insights gained from these studies to induce a controlled transition from redox- to surface chemistry-mediated growth pathways, resulting in the formation of Pt NPs in epitaxial contact and linear alignment along a gold nanoprism substrate. Mechanistic investigations using a combination of electron microscopy and (195)Pt NMR spectroscopy identify Pt(IV) speciation as a crucial parameter for understanding and controlling the formation of Pt-containing NPs. Combined, these findings point toward fully bottom-up methods for deposition and organization of NPs on colloidal plasmonic substrates.

11.
J Am Chem Soc ; 135(14): 5266-9, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23548041

RESUMEN

Discrete gold nanoparticles with diameters between 2 and 3 nm show remarkable properties including enhanced catalytic behavior and photoluminescence. However, tunability of these properties is limited by the tight size range within which they are observed. Here, we report the synthesis of discrete, bimetallic gold-copper nanoparticle alloys (diameter ≅ 2-3 nm) which display photoluminescent properties that can be tuned by changing the alloy composition. Electron microscopy, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, and pulsed-field gradient stimulated echo (1)H NMR measurements show that the nanoparticles are homogeneous, discrete, and crystalline. Upon varying the composition of the nanoparticles from 0% to 100% molar ratio copper, the photoluminescence maxima shift from 947 to 1067 nm, with excitation at 360 nm. The resulting particles exhibit brightness values (molar extinction coefficient (ε) × quantum yield (Φ)) that are more than an order of magnitude larger than the brightest near-infrared-emitting lanthanide complexes and small-molecule probes evaluated under similar conditions.

12.
Langmuir ; 29(13): 4396-403, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23517186

RESUMEN

Seedless initiation has been used as a simple and sustainable alternative to seed-mediated production of two canonical anisotropic gold nanoparticles: nanorods and nanoprisms. The concentration of reducing agent during the nucleation event was found to influence the resulting product morphology, producing nanorods with lengths from 30 to 630 nm and triangular or hexagonal prisms with vertex-to-vertex lengths ranging from 120 to over 700 nm. The seedless approach is then used to eliminate several chemical reagents and reactions steps from classic particle preparations while achieving almost identical nanoparticle products and product yields. Our results shed light on factors that influence (or do not influence) the evolution of gold nanoparticle shape and present a dramatically more efficient route to obtaining these architectures. Specifically, using these methods reduces the total amount of reagent needed to produce nanorods and nanoprisms by as much as 90 wt % and, to the best of our knowledge, has yielded the first report of spectroscopically discernible, colloidal gold nanoplates synthesized using a seedless methodology.

13.
J Phys Chem Lett ; 14(2): 468-475, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36623167

RESUMEN

Machine learning interatomic potentials powered by neural networks have been shown to readily model a gradient of compositions in metallic systems. However, their application to date on ionic systems tends to focus on specific compositions and oxidation states owing to their more heterogeneous chemical nature. Herein we show that a deep neural network potential (DNP) can model various properties of metal oxides with different oxidation states without additional charge information. We created and validated DNPs for AgxOy, CuxOy MgxOy, PtxOy, and ZnxOy, whereby each system was trained without any limitations on oxidation states. We illustrate how the database can be augmented to enhance the DNP transferability for a new polymorph, surface energies, and thermal expansion. In addition, we show that these potentials can correctly interpolate significant pressure and temperature ranges, exhibit stability over long molecular dynamics simulation time scales, and replicate nonharmonic thermal expansion, consistent with experimental results.

14.
J Phys Chem Lett ; 14(39): 8741-8748, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37738009

RESUMEN

While accurate measurements of MgO under extreme high-pressure conditions are needed to understand and model planetary behavior, these studies are challenging from both experimental and computational modeling perspectives. Herein, we accelerate density functional theory (DFT) accurate calculations using deep neural network potentials (DNPs) trained over multiple phases and study the melting behavior of MgO via the two-phase coexistence (TPC) approach at 0-300 GPa and ≤9600 K. The resulting DNP-TPC melting curve is in excellent agreement with existing experimental studies. We show that the mitigation of finite-size effects that typically skew the predicted melting temperatures in DFT-TPC simulations in excess of several hundred kelvin requires models with ∼16 000 atoms and >100 ps molecular dynamics trajectories. In addition, the DNP can successfully describe MgO metallization well at increased pressures that are captured by DFT but missed by classical interatomic potentials.

15.
Nanoscale ; 16(1): 384-393, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38063839

RESUMEN

While nanoalloys are of paramount scientific and practical interest, the main processes leading to their formation are still poorly understood. Key structural features in the alloy systems, including the crystal phase, chemical ordering, and morphology, are challenging to control at the nanoscale, making it difficult to extend their use to industrial applications. In this contribution, we focus on the gold/silver system that has two of the most prevalent noble metals and combine experiments with simulations to uncover the formation mechanisms at the atomic level. Nanoparticles were produced using a state-of-the-art inert-gas aggregation source and analyzed using transmission electron microscopy and energy-dispersive X-ray spectroscopy. Machine-learning-assisted molecular dynamics simulations were employed to model the crystallization process from liquid droplets to nanocrystals. Our study finds a preponderance of nanoparticles with five-fold symmetric morphology, including icosahedra and decahedra which is consistent with previous results on mono-metallic nanoparticles. However, we observed that gold atoms, rather than silver atoms, segregate at the surface of the obtained nanoparticles for all the considered alloy compositions. These segregation tendencies are in contrast to previous studies and have consequences on the crystallization dynamics and the subsequent crystal ordering. We finally showed that the underpinning of this surprising segregation dynamics is due to charge transfer and electrostatic interactions rather than surface energy considerations.

16.
J Am Chem Soc ; 134(37): 15545-9, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22920726

RESUMEN

A key distinction between the lanthanide (4f) and the actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium(III). While the radioactivity kept the amount of material limited to micromole amounts, spectra of the highly luminescent complexes showed significant emission peak shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra.


Asunto(s)
Elementos de Series Actinoides/química , Curio/química , Luminiscencia , Espectrometría de Masa por Ionización de Electrospray
17.
Eur J Inorg Chem ; 2012(12): 2108-2114, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23539072

RESUMEN

Magnetic resonance imaging (MRI) contrast agents represent a worldwide billion-dollar market annually. While T1 relaxivity enhancement contrast agents receive greater attention and a significantly larger market share, the commercial potential for T2 relaxivity enhancing contrast agents remains a viable diagnostic option due to their increased relaxivity at high field strengths. Improving the contrast and biocompatibility of T2 MRI probes may enable new diagnostic prospects for MRI. Paramagnetic lanthanides have the potential to decrease T1 and T2 proton relaxation times, but are not commercially used in MRI diagnostics as T2 agents. In this article, oxygen donor chelates (hydroxypyridinone, HOPO, and terephthalamide, TAM) of various lanthanides are demonstrated as biocompatible macromolecular dendrimer conjugates for the development of T2 MRI probes. These conjugates have relaxivities up to 374 mm-1s-1 per dendrimer, high bioavailability, and low in vitro toxicity.

18.
Bioconjug Chem ; 20(7): 1375-82, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19555071

RESUMEN

A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane, 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications, because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s(-1)) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln(2)(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethyl phosphate, and DNA. The CEST amide peak of Nd(2)(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu(2)(1) show that double-stranded and hairpin-loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu(2)(1) carbonate complex (K(d) = 15 microM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds.


Asunto(s)
Carbonatos/química , Medios de Contraste/química , ADN/química , Neodimio/química , Mediciones Luminiscentes , Espectroscopía de Resonancia Magnética
19.
Appl Spectrosc ; 63(5): 483-93, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19470203

RESUMEN

A new spectroscopic system for direct photoluminescence of lanthanide ions (Ln(III)) through electronic transitions within the 4f(n) manifold is described. The system is based on an injection seeded frequency tripled (lambda = 355 nm) Nd:YAG pump laser coupled with a master oscillator power oscillator (MOPO). The MOPO delivers an average pulse energy of approximately 60 mJ/pulse, is continuously tunable from 425 to 690 nm (Signal) and 735 to 1800 nm (Idler) with a linewidth of <0.2 cm(-1), and has a pulse duration of 10-12 ns. Aqueous solutions containing two polyaminocarboxylate complexes, ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), and Ln(3+) aqua ion for several lanthanides including Eu(III), Tb(III), Dy(III), and Sm(III)) are used as steady-state and time-resolved photoluminescence standards. The versatility of the instrument is demonstrated by excitation scans over a broad visible range for aqueous solutions of complexes of Eu(III), Dy(III), Sm(III), and Tb(III). The Eu(III) excitation band ((7)F(o)-->(5)D(o)) is recorded over a range of complex concentrations that are 1000-fold less than reported previously, including Eu(EDTA) (1.00 nM), Eu(DTPA) (1.00 nM), and Eu(III) aqua ion (50.0 nM). Emission spectra are recorded in the visible range for Ln(III) complexes at pH 6.5 and 1.00 mM. Excited-state lifetimes for the standards were constant as a function of concentration from 10.0 nM to 1.00 mM for Eu(EDTA) and Eu(DTPA) and from 100 nM to 1.00 mM for Eu(III) aqua ion. Photoluminescence lifetimes in H(2)O and D(2)O are recorded and used to calculate the number of bound water molecules for all complexes.

20.
J Am Chem Soc ; 130(44): 14861-71, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18844350

RESUMEN

Dinuclear europium(III) complexes of the macrocycles 1,3-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-m-xylene (1), 1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene (2), and mononuclear europium(III) complexes of macrocycles 1-methyl-,4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (3), 1-[3'-(N,N-diethylaminomethyl)benzyl]-4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (4), and 1,4,7-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (5) were prepared. Studies using direct excitation ((7)F0 --> (5)D0) europium(III) luminescence spectroscopy show that each Eu(III) center in the mononuclear and dinuclear complexes has two water ligands at pH 7.0, I = 0.10 M (NaNO3) and that there are no water ligand ionizations over the pH range of 7-9. All complexes promote cleavage of the RNA analogue 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) at 25 degrees C (I = 0.10 M (NaNO3), 20 mM buffer). Second-order rate constants for the cleavage of HpPNP by the catalysts increase linearly with pH in the pH range of 7-9. The second-order rate constant for HpPNP cleavage by the dinuclear Eu(III) complex (Eu2(1)) at pH 7 is 200 and 23-fold higher than that of Eu(5) and Eu(3), respectively, but only 7-fold higher than the mononuclear complex with an aryl pendent group, Eu(4). This shows that the macrocycle substituent modulates the efficiency of the Eu(III) catalysts. Eu2(1) promotes cleavage of a dinucleoside, uridylyl-3',5'-uridine (UpU) with a second-order rate constant at pH 7.6 (0.021 M(-1) s(-1)) that is 46-fold higher than that of the mononuclear Eu(5) complex. Methyl phosphate binding to the Eu(III) complexes is energetically most favorable for the best catalysts, and this supports an important role for the catalyst in stabilization of the developing negative charge on the phosphorane transition state. Despite the formation of a bridging phosphate ester between the two Eu(III) centers in Eu2(1) as shown by luminescence spectroscopy, the two metal ion centers are only weakly cooperative in cleavage of RNA and RNA analogues.


Asunto(s)
Europio/química , Compuestos Organometálicos/química , ARN/química , Catálisis , Ciclamas , Compuestos Heterocíclicos/química , Cinética , Ligandos , Mediciones Luminiscentes , Compuestos Organometálicos/síntesis química , ARN/metabolismo , Soluciones , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA