Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomacromolecules ; 24(6): 2755-2765, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37222557

RESUMEN

We establish a versatile hydrogel platform based on modular building blocks that allows the design of hydrogels with tailored physical architecture and mechanical properties. We demonstrate its versatility by assembling (i) a fully monolithic gelatin methacryloyl (Gel-MA) hydrogel, (ii) a hybrid hydrogel composed of 1:1 Gel-MA and gelatin nanoparticles, and (iii) a fully particulate hydrogel based on methacryloyl-modified gelatin nanoparticles. The hydrogels were formulated to exhibit the same solid content and comparable storage modulus but different stiffness and viscoelastic stress relaxation. The incorporation of particles resulted in softer hydrogels with enhanced stress relaxation. Murine osteoblastic cells cultured in two-dimensional (2D) on hydrogels showed proliferation and metabolic activity comparable to established collagen hydrogels. Furthermore, the osteoblastic cells showed a trend of increased cell numbers, cell expansion, and more defined protrusions on stiffer hydrogels. Hence, modular assembly allows the design of hydrogels with tailored mechanical properties and the potential to alter cell behavior.


Asunto(s)
Gelatina , Hidrogeles , Ratones , Animales , Hidrogeles/farmacología , Colágeno , Proliferación Celular , Ingeniería de Tejidos/métodos
2.
ACS Biomater Sci Eng ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373188

RESUMEN

Hydroxyapatite nanoparticles (nHA) have gained attention as potential intracellular drug delivery vehicles due to their high binding affinity for various biomolecules and pH-dependent solubility. Yet, the dependence of nHA cytocompatibility on their physicochemical properties remains unclear since numerous studies have revealed starkly contrasting results. These discrepancies may be attributed to differences in size, shape, crystallinity, and aggregation state of nHA, which complicates fundamental understanding of the factors driving nHA cytotoxicity. Here, we hypothesize that nHA cytotoxicity is primarily driven by intracellular calcium levels following the internalization of nHA nanoparticles. By investigating the cytotoxicity of spherical nHA with different crystallinity and dispersity, we find that both lower crystallinity and increased agglomeration of nHA raise cytotoxicity, with nanoparticle agglomeration being the more dominant factor. We show that the internalization of nHA enhances intracellular calcium levels and increases the production of reactive oxygen species (ROS). However, only subtle changes in intracellular calcium are observed, and their physiological relevance remains to be confirmed. In conclusion, we show that nHA agglomeration enhances ROS production and the associated cytotoxicity. These findings provide important guidelines for the future design of nHA-containing formulations for biomedical applications, implying that nHA crystallinity and especially agglomeration should be carefully controlled to optimize biocompatibility and therapeutic efficacy.

3.
J Biomed Mater Res A ; 112(11): 1873-1892, 2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-38725302

RESUMEN

Tightly sealed peri-implant gingival tissue provides a barrier against oral bacterial invasion, protecting the alveolar bone and maintaining long-term implant survival. To investigate if zinc can enhance the integration between peri-implant gingival tissue and abutment surface, we herein present novel zinc/chitosan/gelatin (Zn/CS/Gel) coatings prepared using the electrophoretic deposition (EPD) technique. The effect of these coatings on human gingival fibroblasts (hGFs) was investigated by culturing these cells on top of the EPD coatings. Surface characterization demonstrated that Zn2+ were released in a sustained and pH-responsive manner. The preclinical cell culture evaluation of these coatings indicated that the zinc-containing coatings enhanced cell migration, adhesion and collagen secretion of hGFs. Moreover, the zinc-containing coatings exhibited antibacterial efficacy by inhibiting the growth of Porphyromonas gingivalis and reducing attachment of Staphylococcus aureus. Notably, zinc-free CS/Gel coatings prevented attachment of P. gingivalis as well. The coatings were also shown to be cytocompatible with epithelial cells and osteoblasts, which are other relevant cell types which surround dental implants after clinical placement. Based on our findings, it can be concluded that Zn-containing coatings hold promise to enhance the adhesion of gingival tissue to the implant surface, which may potentially contribute to the formation of a robust peri-implant soft sealing counteracting bacterial invasion.


Asunto(s)
Antibacterianos , Quitosano , Materiales Biocompatibles Revestidos , Fibroblastos , Gelatina , Staphylococcus aureus , Zinc , Quitosano/química , Quitosano/farmacología , Zinc/química , Zinc/farmacología , Humanos , Gelatina/química , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Staphylococcus aureus/efectos de los fármacos , Pilares Dentales , Encía/citología , Porphyromonas gingivalis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
4.
ACS Appl Mater Interfaces ; 16(38): 50497-50506, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39284017

RESUMEN

Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.


Asunto(s)
Durapatita , Gelatina , Nanocompuestos , Nanopartículas , ARN Mensajero , Gelatina/química , Durapatita/química , Nanocompuestos/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nanopartículas/química , Humanos , Animales , Hidrogeles/química , Ratones , Materiales Biocompatibles/química
5.
Int J Nanomedicine ; 18: 1599-1612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37013026

RESUMEN

Introduction: There has recently been a surge of interest in mesoporous bioactive glass nanoparticles (MBGNs) as multi-functional nanocarriers for application in bone-reconstructive and -regenerative surgery. Their excellent control over their structural and physicochemical properties renders these nanoparticles suitable for the intracellular delivery of therapeutic agents to combat degenerative bone diseases, such as bone infection, or bone cancer. Generally, the therapeutic efficacy of nanocarriers strongly depends on the efficacy of their cellular uptake, which is determined by numerous factors including cellular features and the physicochemical characteristics of nanocarriers, particularly surface charge. In this study, we have systematically investigated the effect of the surface charge of MBGNs doped with copper as a model therapeutic agent on cellular uptake by both macrophages and pre-osteoblast cells involved in bone healing and bone infections to guide the future design of MBGN-based nanocarriers. Methods: Cu-MBGNs with negative, neutral, and positive surface charges were synthesized and their cellular uptake efficiency was assessed. Additionally, the intracellular fate of internalized nanoparticles along with their ability to deliver therapeutic cargo was studied in detail. Results: The results showed that both cell types internalized Cu-MBGNs regardless of their surface charge, indicating that cellular uptake of nanoparticles is a complex process influenced by multiple factors. This similarity in cellular uptake was attributed to the formation of a protein corona surrounding the nanoparticles when exposed to protein-rich biological media, which masks the original nanoparticle surface. Once internalized, the nanoparticles were found to mainly colocalize with lysosomes, exposing them to a more compartmentalized and acidic environment. Furthermore, we verified that Cu-MBGNs released their ionic components (Si, Ca, and Cu ions) in both acidic and neutral environments, leading to the delivery of these therapeutic cargos intracellularly. Conclusion: The effective internalization of Cu-MBGNs and their ability to deliver cargos intracellularly highlight their potential as intracellular delivery nanocarriers for bone-regenerative and -healing applications.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas , Nanopartículas/química , Regeneración Ósea , Cicatrización de Heridas , Vidrio/química
6.
Acta Biomater ; 138: 124-132, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34740854

RESUMEN

Viscoelastic properties of hydrogels such as stress relaxation or plasticity have been recognized as important mechanical cues that dictate the migration, proliferation, and differentiation of embedded cells. Stress relaxation rates in conventional hydrogels are usually much slower than cellular processes, which impedes rapid cellularization of these elastic networks. Colloidal hydrogels assembled from nanoscale building blocks may provide increased degrees of freedom in the design of viscoelastic hydrogels with accelerated stress relaxation rates due to their strain-sensitive rheology which can be tuned via interparticle interactions. Here, we investigate the stress relaxation of colloidal hydrogels from gelatin nanoparticles in comparison to physical gelatin hydrogels and explore the particle interactions that govern stress relaxation. Colloidal and physical gelatin hydrogels exhibit comparable rheology at small deformations, but colloidal hydrogels fluidize beyond a critical strain while physical gels remain primarily elastic independent of strain. This fluidization facilitates fast exponential stress relaxation in colloidal gels at strain levels that correspond to strains exerted by cells embedded in physiological extracellular matrices (10-50%). Increased attractive particle interactions result in a higher critical strain and slower stress relaxation in colloidal gels. In physical gels, stress relaxation is slower and mostly independent of strain. Hence, colloidal hydrogels offer the possibility to modulate viscoelasticity via interparticle interactions and obtain fast stress relaxation rates at strains relevant for cell activity. These beneficial features render colloidal hydrogels promising alternatives to conventional monolithic hydrogels for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: In the endeavor to design biomaterials that favor cell activity, research has long focused on biochemical cues. Recently, the time-, stress-, and strain-dependent mechanical properties, i.e. viscoelasticity, of biomaterials has been recognized as important factor that dictates cell fate. We herein present the viscoelastic stress relaxation of colloidal hydrogels assembled from gelatin nanoparticles, which show a strain-dependent fluidization at strains relevant for cell activity, in contrast to many commonly used monolithic hydrogels with primarily elastic behavior.


Asunto(s)
Gelatina , Nanopartículas , Materiales Biocompatibles , Hidrogeles/farmacología , Ingeniería de Tejidos
7.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234551

RESUMEN

Messenger RNA (mRNA) is increasingly gaining interest as a modality in vaccination and protein replacement therapy. In regenerative medicine, the mRNA-mediated expression of growth factors has shown promising results. In contrast to protein delivery, successful mRNA delivery requires a vector to induce cellular uptake and subsequent endosomal escape to reach its end destination, the ribosome. Current non-viral vectors such as lipid- or polymer-based nanoparticles have been successfully used to express mRNA-encoded proteins. However, to advance the use of mRNA in regenerative medicine, it is required to assess the compatibility of mRNA with biomaterials that are typically applied in this field. Herein, we investigated the complexation, cellular uptake and maintenance of the integrity of mRNA complexed with gelatin nanoparticles (GNPs). To this end, GNPs with positive, neutral or negative surface charge were synthesized to assess their ability to bind and transport mRNA into cells. Positively charged GNPs exhibited the highest binding affinity and transported substantial amounts of mRNA into pre-osteoblastic cells, as assessed by confocal microscopy using fluorescently labeled mRNA. Furthermore, the GNP-bound mRNA remained stable. However, no expression of mRNA-encoded protein was detected, which is likely related to insufficient endosomal escape and/or mRNA release from the GNPs. Our results indicate that gelatin-based nanomaterials interact with mRNA in a charge-dependent manner and also mediate cellular uptake. These results create the basis for the incorporation of further functionality to yield endosomal release.

8.
Pharmaceutics ; 13(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834361

RESUMEN

To investigate the delivery of next-generation macromolecular drugs, such as engineered proteins and mRNA-containing nanoparticles, there is an increasing push towards the use of physiologically relevant disease models that incorporate human cells and do not face ethical dilemmas associated with animal use. Here, we illustrate the versatility and ease of use of a microfluidic platform for studying drug delivery using high-resolution microscopy in 3D. Using this microfluidic platform, we successfully demonstrate the specific targeting of carbonic anhydrase IX (CAIX) on cells overexpressing the protein in a tumor-mimicking chip system using affibodies, with CAIX-negative cells and non-binding affibodies as controls. Furthermore, we demonstrate this system's feasibility for testing mRNA-containing biomaterials designed to regenerate bone defects. To this end, peptide- and lipid-based mRNA formulations were successfully mixed with colloidal gelatin in microfluidic devices, while translational activity was studied by the expression of a green fluorescent protein. This microfluidic platform enables the testing of mRNA delivery from colloidal biomaterials of relatively high densities, which represents a first important step towards a bone-on-a-chip platform. Collectively, by illustrating the ease of adaptation of our microfluidic platform towards use in distinct applications, we show that our microfluidic chip represents a powerful and flexible way to investigate drug delivery in 3D disease-mimicking culture systems that recapitulate key parameters associated with in vivo drug application.

9.
Acta Biomater ; 96: 557-567, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31284095

RESUMEN

The development of smart interfaces that can guide tissue formation is of great importance in the field of regenerative medicine. Nanoparticles represent an interesting class of materials that can be used to enhance regenerative treatments by enabling close control over surface properties and directing cellular responses. Moreover, nanoparticles can be used to provide temporally controlled delivery of (multiple) biochemical compounds. Here, we exploited the cargo loading and surface functionalization properties of mesoporous silica nanoparticles (MSNs) to design films that can guide human mesenchymal stem cell (hMSC) differentiation towards the osteogenic lineage. We developed biocompatible MSN-based films that support stem cell adhesion and proliferation and demonstrated that these MSN films simultaneously allowed efficient local delivery of biomolecules without effecting film integrity. Films loaded with the osteogenesis-stimulating drug dexamethasone (Dex) were able to induce osteogenic differentiation of hMSCs in vitro. Dex delivery from the films led to increased alkaline phosphatase levels and matrix mineralization compared to directly supplementing Dex to the medium. Furthermore, we demonstrated that Dex release kinetics can be modulated using surface modifications with supported lipid bilayers. Together, these data demonstrate that MSN films represent an interesting approach to create biomaterial interfaces with controllable biomolecule release and surface properties to improve the bioactivity of biomaterials. STATEMENT OF SIGNIFICANCE: Engineering surfaces that can control cell and tissue responses is one of the major challenges in biomaterials-based regenerative therapies. Here, we demonstrate the potential of mesoporous silica nanoparticles (MSNs) as drug-delivering surface coatings. First, we show differentiation of mesenchymal stem cells towards the bone lineage when in contact with MSN films loaded with dexamethasone. Furthermore, we demonstrate that modification of MSNs with supported lipid bilayer allows control over drug release dynamics and cell shape. Given the range of loadable cargos and the tunability of release kinetics, MSN coatings can be used to mimic the sequential appearance of bioactive factors during tissue regeneration, which will ultimately lead to biomaterials with improved bioactivity.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Dexametasona , Membranas Artificiales , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Osteogénesis/efectos de los fármacos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Dexametasona/química , Dexametasona/farmacología , Humanos , Células Madre Mesenquimatosas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA