Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280374

RESUMEN

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Asunto(s)
Complemento C3 , Mucosa Intestinal , Microbiota , Animales , Humanos , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neutrófilos , Complemento C3/metabolismo , Células del Estroma/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(36): e2308752120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639588

RESUMEN

The causative agent of human Q fever, Coxiella burnetii, is highly adapted to infect alveolar macrophages by inhibiting a range of host responses to infection. Despite the clinical and biological importance of this pathogen, the challenges related to genetic manipulation of both C. burnetii and macrophages have limited our knowledge of the mechanisms by which C. burnetii subverts macrophages functions. Here, we used the related bacterium Legionella pneumophila to perform a comprehensive screen of C. burnetii effectors that interfere with innate immune responses and host death using the greater wax moth Galleria mellonella and mouse bone marrow-derived macrophages. We identified MceF (Mitochondrial Coxiella effector protein F), a C. burnetii effector protein that localizes to mitochondria and contributes to host cell survival. MceF was shown to enhance mitochondrial function, delay membrane damage, and decrease mitochondrial ROS production induced by rotenone. Mechanistically, MceF recruits the host antioxidant protein Glutathione Peroxidase 4 (GPX4) to the mitochondria. The protective functions of MceF were absent in primary macrophages lacking GPX4, while overexpression of MceF in human cells protected against oxidative stress-induced cell death. C. burnetii lacking MceF was replication competent in mammalian cells but induced higher mortality in G. mellonella, indicating that MceF modulates the host response to infection. This study reveals an important C. burnetii strategy to subvert macrophage cell death and host immunity and demonstrates that modulation of the host antioxidant system is a viable strategy to promote the success of intracellular bacteria.


Asunto(s)
Antioxidantes , Coxiella , Humanos , Animales , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Estrés Oxidativo , Muerte Celular , Mamíferos
3.
Mol Microbiol ; 117(2): 293-306, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783412

RESUMEN

Salmonellosis is a public health problem caused by Salmonella sp., a highly adapted facultative intracellular pathogen. After internalization, Salmonella sp. Manipulates several host processes, mainly through the activation of the type III secretion system (T3SS), including modification of host lipid metabolism and lipid droplet (LD) accumulation. LDs are dynamic and complex lipid-rich organelles involved in several cellular processes. The present study investigated the mechanism involved in LD biogenesis in Salmonella-infected macrophages and its role in bacterial pathogenicity. Here, we reported that S. Typhimurium induced a rapid time-dependent increase of LD formation in macrophages. The LD biogenesis was demonstrated to depend on Salmonella's viability and SPI1-related T3SS activity, with the participation of Toll-Like Receptor (TLR) signaling. We also observed that LD accumulation occurs through TLR2-dependent signaling and is counter-regulated by TLR4. Last, the pharmacologic modulation of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced the intracellular bacterial proliferation and impaired the prostaglandin E2 (PGE2 ) synthesis. Collectively, our data suggest the role of LDs on S. typhimurium intracellular survival and replication in macrophages. This data set provides new perspectives for future investigations about LDs in host-pathogen interaction.


Asunto(s)
Gotas Lipídicas , Infecciones por Salmonella , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Macrófagos/microbiología , Sistemas de Secreción Tipo III/metabolismo
4.
Cytokine ; 143: 155524, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849767

RESUMEN

INTRODUCTION: Asthma is a heterogeneous disease characterized by multiples respiratory symptoms; this is a polygenic entity that involves a complex interaction of environmental factors and inherent to the individual. To understand the development of asthma, some phenotypes have been proposed. OBJECTIVE: This work's purpose was to explore different molecules related to asthma development and to define each phenotype's specific characteristics. MATERIAL AND METHODS: 96 adult patients diagnosed with asthma before any treatment were enrolled in the protocol. Spirometric parameters, circulating leukocytes, serum IgE, body mass index, exhaled nitric oxide (FENO), and leukotrienes (LTB4) in urine were determined in each patient. The presence of asthma phenotypes proposed by the Global Initiative for Asthma (GINA) were explored: A) Allergic asthma, B) Non-allergic asthma, C) Late-onset asthma, D) Asthma with persistent airflow limitation, and E) Asthma with overweight and obesity. RESULTS: In the cohort analyzed, we found four of phenotypes proposed by GINA; however, these phenotypes overlapped, due to this, 4 groups were integrated with allergic, non-allergic and obese patients, which were the main phenotypes. The main overlap was that of patients not-obese allergic, and was characterized by earlier onset, elevated levels of IgE, LTB4 and inflammasome related cytokines. Non-allergic patients had a significant association between interleukin (IL)-18 and IL-18 binding protein (BP) with narrow ratio between these cytokines. Finally, LTB4 had remarkable capacity to discriminate between allergic and not allergic patients. CONCLUSIONS: Asthmatic phenotypes exist as interrelated characteristics and not as discrete entities. High levels of leukotrienes and IgE are hallmarks in the allergic phenotype of asthma.


Asunto(s)
Asma/genética , Asma/patología , Adulto , Edad de Inicio , Asma/sangre , Asma/diagnóstico , Biomarcadores/sangre , Citocinas/sangre , Eosinófilos/metabolismo , Femenino , Humanos , Hipersensibilidad/sangre , Hipersensibilidad/complicaciones , Inmunoglobulina E/sangre , Inflamasomas/sangre , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/sangre , Interleucina-18/sangre , Interleucina-8/sangre , Leucotrienos/orina , Masculino , Persona de Mediana Edad , Sobrepeso , Fenotipo , Factor de Crecimiento Transformador beta/sangre
5.
J Immunol ; 200(2): 768-774, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29212905

RESUMEN

Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human monocytes binds and activates cyclic GMP-AMP synthase (cGAS). Activated cGAS synthesizes 2'3'-cGAMP, which we subsequently can detect using liquid chromatography-tandem mass spectrometry. 2'3'-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-ß induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN in response to malaria parasites.


Asunto(s)
ADN Protozoario/metabolismo , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/metabolismo , Plasmodium falciparum/genética , Adolescente , Adulto , Células Cultivadas , Eritrocitos/metabolismo , Eritrocitos/parasitología , Femenino , Humanos , Factor 3 Regulador del Interferón/metabolismo , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Masculino , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Nucleótidos Cíclicos/metabolismo , Fosforilación , Transducción de Señal , Adulto Joven
6.
Curr Issues Mol Biol ; 25: 99-132, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28875942

RESUMEN

Inflammasomes are multiprotein platforms assembled in the cytosol in response to pathogens and cell stress. Inflammasomes are recognized by their important role on defenses against bacterial infections and have been also implicated in a range of human inflammatory disorders. Intracellular sensors such as NLRP1, NLRP3, NLRC4, AIM2 and Pyrin induce assembly of inflammasomes, while caspase-11 induces the non-canonical pathway for activation of the NLRP3 inflammasome. The formation of the inflammasome leads to caspase-1 activation that triggers pyroptosis and activation of interleukin-1ß (IL-1ß) and IL-18. Pyroptotic cell death and cytokines production are involved in restriction of bacterial replication by limiting the replication niche of intracellular bacteria and by inducing inflammatory responses. In this review we focus on the mechanisms mediated by inflammasome activation that leads to inflammatory responses and restriction of bacterial infection.


Asunto(s)
Bacterias Gramnegativas/inmunología , Bacterias Grampositivas/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Inflamasomas/inmunología , Piroptosis/inmunología , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Caspasa 1/genética , Caspasa 1/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Regulación de la Expresión Génica , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteínas NLR , Pirina/genética , Pirina/inmunología , Piroptosis/genética , Transducción de Señal , Linfocitos T/microbiología
7.
PLoS Pathog ; 10(1): e1003885, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453977

RESUMEN

Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1ß. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1ß expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1ß upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14(+)CD16(-)Caspase-1(+) and CD14(dim)CD16(+)Caspase-1(+) monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1ß after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1ß and hypersensitivity to secondary bacterial infection during malaria.


Asunto(s)
Infecciones Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Malaria Vivax/microbiología , Plasmodium chabaudi/metabolismo , Plasmodium vivax/metabolismo , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Caspasa 1/genética , Caspasa 1/inmunología , Femenino , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Malaria Vivax/inmunología , Malaria Vivax/metabolismo , Malaria Vivax/patología , Masculino , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Proteína con Dominio Pirina 3 de la Familia NLR , Plasmodium chabaudi/inmunología , Plasmodium vivax/inmunología , Choque Séptico/genética , Choque Séptico/inmunología , Choque Séptico/metabolismo , Choque Séptico/patología
8.
J Immunol ; 191(6): 3373-83, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23966627

RESUMEN

The innate immune response to Trypanosoma cruzi infection comprises several pattern recognition receptors (PRRs), including TLR-2, -4, -7, and -9, as well as the cytosolic receptor Nod1. However, there are additional PRRs that account for the host immune responses to T. cruzi. In this context, the nucleotide-binding oligomerization domain-like receptors (NLRs) that activate the inflammasomes are candidate receptors that deserve renewed investigation. Following pathogen infection, NLRs form large molecular platforms, termed inflammasomes, which activate caspase-1 and induce the production of active IL-1ß and IL-18. In this study, we evaluated the involvement of inflammasomes in T. cruzi infection and demonstrated that apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasomes, including NLR family, pyrin domain-containing 3 (NLRP3), but not NLR family, caspase recruitment domain-containing 4 or NLR family, pyrin domain-containing 6, are required for triggering the activation of caspase-1 and the secretion of IL-1ß. The mechanism by which T. cruzi mediates the activation of the ASC/NLRP3 pathway involves K⁺ efflux, lysosomal acidification, reactive oxygen species generation, and lysosomal damage. We also demonstrate that despite normal IFN-γ production in the heart, ASC⁻/⁻ and caspase-1⁻/⁻ infected mice exhibit a higher incidence of mortality, cardiac parasitism, and heart inflammation. These data suggest that ASC inflammasomes are critical determinants of host resistance to infection with T. cruzi.


Asunto(s)
Enfermedad de Chagas/inmunología , Proteínas del Citoesqueleto/inmunología , Resistencia a la Enfermedad/inmunología , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/inmunología , Caspasa 1/inmunología , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Análisis de Secuencia por Matrices de Oligonucleótidos , Trypanosoma cruzi/inmunología
9.
Cell Rep ; 43(2): 113795, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38367238

RESUMEN

Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2-/- mice are only slightly susceptible to T. gondii infection, similar to Irak1-/- mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Toxoplasmosis , Animales , Ratones , Células Dendríticas , Factores Reguladores del Interferón/genética , Interleucina-12
10.
Sci Rep ; 13(1): 19614, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950057

RESUMEN

Ras guanine nucleotide exchange factor member 1b (RasGEF1b) of the RasGEF/CDC25 domain-containing family is preferentially expressed by macrophages. However, information is lacking about its role in macrophage function. In this study, we generated mice with ubiquitous deletion of Rasgef1b and used RNA-seq-based transcriptomics to compare the global gene expression in wild-type and knock-out primary bone-marrow-derived macrophages under basal conditions and after lipopolysaccharide (LPS) treatment. Transcriptional filtering identified several genes with significantly different transcript levels between wild-type and knock-out macrophages. In total, 49 and 37 differentially expressed genes were identified at baseline and in LPS-activated macrophages, respectively. Distinct biological processes were significantly linked to down-regulated genes at the basal condition only, and largely included chemotaxis, response to cytokines, and positive regulation of GTPase activity. Importantly, validation by RT-qPCR revealed that the expression of genes identified as down-regulated after LPS stimulation was also decreased in the knock-out cells under basal conditions. We used a luciferase-based reporter assay to showcase the capability of RasGEF1b in activating the Serpinb2 promoter. Notably, knockdown of RasGEF1b in RAW264.7 macrophages resulted in impaired transcriptional activation of the Serpinb2 promoter, both in constitutive and LPS-stimulated conditions. This study provides a small collection of genes that shows relative expression changes effected by the absence of RasGEF1b in macrophages. Thus, we present the first evidence that RasGEF1b mediates the regulation of both steady-state and signal-dependent expression of genes and propose that this GEF plays a role in the maintenance of the basal transcriptional level in macrophages.


Asunto(s)
Citocinas , Lipopolisacáridos , Animales , Ratones , Quimiotaxis , Citocinas/genética , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Transcriptoma
11.
Nat Commun ; 14(1): 1049, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828815

RESUMEN

Intracellular parasites from the Leishmania genus cause Leishmaniasis, a disease affecting millions of people worldwide. NLRP3 inflammasome is key for disease outcome, but the molecular mechanisms upstream of the inflammasome activation are still unclear. Here, we demonstrate that despite the absence of pyroptosis, Gasdermin-D (GSDMD) is active at the early stages of Leishmania infection in macrophages, allowing transient cell permeabilization, potassium efflux, and NLRP3 inflammasome activation. Further, GSDMD is processed into a non-canonical 25 kDa fragment. Gsdmd-/- macrophages and mice exhibit less NLRP3 inflammasome activation and are highly susceptible to infection by several Leishmania species, confirming the role of GSDMD for inflammasome-mediated host resistance. Active NLRP3 inflammasome and GSDMD are present in skin biopsies of patients, demonstrating activation of this pathway in human leishmaniasis. Altogether, our findings reveal that Leishmania subverts the normal functions of GSDMD, an important molecule to promote inflammasome activation and immunity in Leishmaniasis.


Asunto(s)
Leishmania , Leishmaniasis , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Gasderminas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leishmania/metabolismo , Piroptosis/fisiología
12.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778396

RESUMEN

Canonically, complement is a serum-based host defense system that protects against systemic microbial invasion. Little is known about the production and function of complement components on mucosal surfaces. Here we show gut complement component 3 (C3), central to complement function, is regulated by the composition of the microbiota in healthy humans and mice, leading to host-specific gut C3 levels. Stromal cells in intestinal lymphoid follicles (LFs) are the predominant source of intestinal C3. During enteric infection with Citrobacter rodentium or enterohemorrhagic Escherichia coli, luminal C3 levels increase significantly and are required for protection. C. rodentium is remarkably more invasive to the gut epithelium of C3-deficient mice than of wild-type mice. In the gut, C3-mediated phagocytosis of C. rodentium functions to clear pathogens. Our study reveals that variations in gut microbiota determine individuals’ intestinal mucosal C3 levels, dominantly produced by LF stromal cells, which directly correlate with protection against enteric infection. Highlights: Gut complement component 3 (C3) is induced by the microbiome in healthy humans and mice at a microbiota-specific level.Gut stromal cells located in intestinal lymphoid follicles are a major source of luminal C3 During enteric infections with Citrobacter rodentium or enterohemorrhagic Escherichia coli, gut luminal C3 levels increase and are required for protection. C. rodentium is significantly more invasive of the gut epithelium in C3-deficient mice when compared to WT mice. In the gut, C3-mediated opsonophagocytosis of C. rodentium functions to clear pathogens.

13.
Cells ; 12(1)2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36611853

RESUMEN

Anti-synthetase syndrome (ASSD) is an autoimmune disorder characterized by inflammatory interstitial lung disease (ILD). The main objective of this work was to quantify the concentrations of cytokines and molecules associated with inflammasome activation in bronchoalveolar lavage (BAL) of patients with ASSD and a comparison group of systemic sclerosis (SSc) patients. Cytokines and lactate dehydrogenase (LDH) were determined using the concentrated BAL protein. The activity of caspase-1 and concentration of NLRP3 with the protein purified from the cell pellet in each group of patients. We found higher caspase-1 levels in ASSD vs. SSc, 1.25 RFU vs. 0.75 RFU p = 0.003, and LDH levels at 0.15 OD vs. 0.09 OD p < 0.001. A significant difference was observed in molecules associated with inflammasome activation, IL-18: 1.42 pg/mL vs. 0.87 pg/mL p = 0.02 and IFN-γ: 0.9 pg/mL vs. 0.86 pg/mL, p = 0.01. A positive correlation was found between caspase-1 and LDH in the patients with ASSD Rho 0.58 (p = 0.008) but not in the SSc group. In patients with ASSD, greater caspase-1 and higher LDH activity were observed in BAL, suggesting cell death due to pyroptosis and activation of the inflammasome pathway.


Asunto(s)
Inflamasomas , Esclerodermia Sistémica , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Citocinas , Esclerodermia Sistémica/complicaciones , Pulmón/metabolismo , Caspasas
14.
Sci Adv ; 8(37): eabo5400, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103544

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inflamasomas , Animales , Humanos , Agentes Inmunomoduladores , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , SARS-CoV-2
15.
Cells ; 10(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34831403

RESUMEN

The production of specific neutralizing antibodies by individuals is thought to be the best option for reducing the number of patients with severe COVID-19, which is the reason why multiple vaccines are currently being administered worldwide. We aimed to explore the effect of revaccination with BCG, on the response to a subsequent anti-SARS-CoV-2 vaccine, in persons occupationally exposed to COVID-19 patients. Two groups of 30 randomized participants were selected: one group received a BCG revaccination, and the other group received a placebo. Subsequently, both groups were vaccinated against SARS-CoV-2. After each round of vaccination, the serum concentration of Th1/Th2 cytokines was determined. At the end of the protocol, neutralizing antibodies were determined and the HLA-DRB loci were genotyped. The participants from the BCG group and anti-SARS-CoV-2 vaccine group had increased serum cytokine concentrations (i.e., IL-1ß, IL-4, IL-6, IL-12p70, IL-13, IL-18, GM-CSF, INF-γ, and TNF-α) and higher neutralizing antibody titers, compared to the group with Placebo-anti-SARS-CoV-2. Twelve HLA-DRB1 alleles were identified in the Placebo-anti-SARS-CoV-2 group, and only nine in the group revaccinated with BCG. The DRB1*04 allele exhibited increased frequency in the Placebo-anti-SARS-CoV-2 group; however, no confounding effects were found with this allele. We conclude that revaccination with BCG synergizes with subsequent vaccination against SARS-CoV-2 in occupationally exposed personnel.


Asunto(s)
Vacuna BCG/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BCG/administración & dosificación , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Citocinas/sangre , Femenino , Genotipo , Antígenos HLA/genética , Personal de Salud , Humanos , Inmunización Secundaria , Masculino , Persona de Mediana Edad , Exposición Profesional , Vacunación
16.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231615

RESUMEN

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Asunto(s)
COVID-19/patología , COVID-19/virología , Inflamasomas/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Apoptosis , Comorbilidad , Citocinas/biosíntesis , Humanos , Pulmón/patología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cambios Post Mortem , Resultado del Tratamiento
17.
J Leukoc Biol ; 108(4): 1117-1127, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531834

RESUMEN

Inflammasomes are cytosolic multiprotein complexes that sense microbial infections or host cell damage, triggering cytokine production and a proinflammatory form of cell death, called pyroptosis. Whereas pyroptosis and cytokine production may often promote host resistance to infections, uncontrolled inflammasome activation leads to autoinflammatory diseases in humans. Among the multiple inflammasomes described, the neuronal apoptosis inhibitory protein/nucleotide-binding domain leucine-rich repeat-containing protein family caspase activation and recruitment domain-containing protein 4 (NLRC4) inflammasome emerged as a critical component for the restriction of bacterial infections. Accordingly, our understanding of this inflammasome advanced remarkably over the last 10 yr, expanding our knowledge about ligand-receptor interaction; cryo-EM structure; and downstream effectors and substrates, such as gasdermin-D, caspase-1, caspase-8, and caspase-7. In this review, we discuss recent advances on the biology of the NLRC4 inflammasome, in terms of structure and activation mechanisms, importance in bacterial and nonbacterial diseases, and the identification of NLRC4 gain-of-function mutations leading to NLRC4-associated autoinflammatory diseases in humans.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Infecciones Bacterianas/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas de Unión al Calcio/inmunología , Inflamasomas/inmunología , Animales , Enfermedades Autoinmunes/patología , Infecciones Bacterianas/patología , Caspasa 1/inmunología , Caspasa 7 , Caspasa 8/inmunología , Humanos , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas de Unión a Fosfato/inmunología
18.
J Leukoc Biol ; 106(3): 631-640, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31063608

RESUMEN

The NLRP3 inflammasome is activated in response to multiple stimuli and triggers activation of caspase-1 (CASP1), IL-1ß production, and inflammation. NLRP3 activation requires two signals. The first leads to transcriptional regulation of specific genes related to inflammation, and the second is triggered when pathogens, toxins, or specific compounds damage cellular membranes and/or trigger the production of reactive oxygen species (ROS). Here, we assess the requirement of the first signal (priming) for the activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) infected with Leishmania amazonensis. We found that BMDMs express the inflammasome components NLRP3, ASC, and CASP1 at sufficient levels to enable the assembly and activation of NLRP3 inflammasome in response to infection. Therefore, priming was not required for the formation of ASC specks, CASP1 activation (measured by fluorescent dye FAM-YVAD), and restriction of L. amazonensis replication via the NLRP3 inflammasome. By contrast, BMDM priming was required for CASP1 cleavage (p20) and IL-1ß secretion, because priming triggers robust up-regulation of pro-IL-1ß and CASP11 that are important for efficient processing of CASP1 and IL-1ß. Taken together, our data shed light into the cellular and molecular processes involved in activation of the NLRP3 in macrophages by Leishmania, a process that is important for the outcome of Leishmaniasis.


Asunto(s)
Inflamasomas/metabolismo , Leishmania mexicana/fisiología , Macrófagos/parasitología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Activación Enzimática , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Cutánea/enzimología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Ligandos , Lipopolisacáridos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Parásitos/crecimiento & desarrollo , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Regulación hacia Arriba
19.
Cell Rep ; 26(2): 429-437.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30625325

RESUMEN

Activation of the NLRP3 inflammasome by Leishmania parasites is critical for the outcome of leishmaniasis, a disease that affects millions of people worldwide. We investigate the mechanisms involved in NLRP3 activation and demonstrate that caspase-11 (CASP11) is activated in response to infection by Leishmania species and triggers the non-canonical activation of NLRP3. This process accounts for host resistance to infection in macrophages and in vivo. We identify the parasite membrane glycoconjugate lipophosphoglycan (LPG) as the molecule involved in CASP11 activation. Cytosolic delivery of LPG in macrophages triggers CASP11 activation, and infections performed with Lpg1-/- parasites reduce CASP11/NLRP3 activation. Unlike bacterial LPS, purified LPG does not activate mouse CASP11 (or human Casp4) in vitro, suggesting the participation of additional molecules for LPG-mediated CASP11 activation. Our data identify a parasite molecule involved in CASP11 activation, thereby establishing the mechanisms underlying inflammasome activation in response to Leishmania species.


Asunto(s)
Caspasas Iniciadoras/metabolismo , Glicoesfingolípidos/metabolismo , Inflamasomas/metabolismo , Leishmania/metabolismo , Leishmania/patogenicidad , Leishmaniasis/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Leishmaniasis/parasitología , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos C57BL
20.
Artículo en Inglés | MEDLINE | ID: mdl-28439500

RESUMEN

Sepsis is a severe syndrome that arises when the host response to an insult is exacerbated, leading to organ failure and frequently to death. How a chronic infection that causes a prolonged Th1 expansion affects the course of sepsis is unknown. In this study, we showed that mice chronically infected with Toxoplasma gondii were more susceptible to sepsis induced by cecal ligation and puncture (CLP). Although T. gondii-infected mice exhibited efficient control of the bacterial burden, they showed increased mortality compared to the control groups. Mechanistically, chronic T. gondii infection induces the suppression of Th2 lymphocytes via Gata3-repressive methylation and simultaneously induces long-lived IFN-γ-producing CD4+ T lymphocytes, which promotes systemic inflammation that is harmful during CLP. Chronic T. gondii infection intensifies local and systemic Th1 cytokines as well as nitric oxide production, which reduces systolic and diastolic arterial blood pressures after sepsis induction, thus predisposing the host to septic shock. Blockade of IFN-γ prevented arterial hypotension and prolonged the host lifespan by reducing the cytokine storm. Interestingly, these data mirrored our observation in septic patients, in which sepsis severity was positively correlated to increased levels of IFN-γ in patients who were serologically positive for T. gondii. Collectively, these data demonstrated that chronic infection with T. gondii is a critical factor for sepsis severity that needs to be considered when designing strategies to prevent and control the outcome of this devastating disease.


Asunto(s)
Coinfección/patología , Sepsis/complicaciones , Sepsis/patología , Toxoplasmosis/complicaciones , Animales , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Ratones , Óxido Nítrico/metabolismo , Células TH1/inmunología , Células Th2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA