Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(26): 10210-3, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22689952

RESUMEN

Nature offers exciting examples for functional wetting properties based on superhydrophobicity, such as the self-cleaning surfaces on plant leaves and trapped air on immersed insect surfaces allowing underwater breathing. They inspire biomimetic approaches in science and technology. Superhydrophobicity relies on the Cassie wetting state where air is trapped within the surface topography. Pressure can trigger an irreversible transition from the Cassie state to the Wenzel state with no trapped air--this transition is usually detrimental for nonwetting functionality and is to be avoided. Here we present a new type of reversible, localized and instantaneous transition between two Cassie wetting states, enabled by two-level (dual-scale) topography of a superhydrophobic surface, that allows writing, erasing, rewriting and storing of optically displayed information in plastrons related to different length scales.

2.
Nano Lett ; 12(4): 1857-62, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22390702

RESUMEN

We report the first successful application of an ordered bicontinuous double-gyroid vanadium pentoxide network in an electrochromic supercapacitor. The freestanding vanadia network was fabricated by electrodeposition into a voided block copolymer template that had self-assembled into the double-gyroid morphology. The highly ordered structure with 11.0 nm wide struts and a high specific surface to bulk volume ratio of 161.4 µm(-1) is ideal for fast and efficient lithium ion intercalation/extraction and faradaic surface reactions, which are essential for high energy and high power density electrochemical energy storage devices. Supercapacitors made from such gyroid-structured vanadia electrodes exhibit a high specific capacitance of 155 F g(-1) and show a strong electrochromic color change from green/gray to yellow, indicating the capacitor's charge condition. The nanostructuring approach and utilizing an electrode material that has intrinsic electrochemical color-change properties are concepts that can be readily extended to other electrochromic intercalation compounds.

3.
Nanotechnology ; 22(24): 245702, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21508455

RESUMEN

Different graphene inks have been synthesized by chemical methods. These uniform dispersions were stabilized by various functional groups such as room temperature ionic liquid, polyaniline, polyelectrolyte (poly[2,5-bis(3-sulfonatopropoxy)-1,4-ethynylphenylene-alt-1,4-ethynylphenylene] sodium salt) and poly(styrenesulfonate) (PSS). The dispersions can be easily cast into high-quality, free-standing films but with very different physiochemical properties such as surface tension and adhesion. SEM and AFM methods have been applied to have a detailed study of the properties of the inks. It is found that graphenes modified by p-type polyaniline show the highest surface tension. Diverse surface adhesive properties to the substrate are also found with various functional groups. The different viscoelasticities of graphene inks were related to the microscopic structure of their coating layer and subsequently related to the configuration, chemistry and molecular dimensions of the modifying molecules to establish the property-structure relationship. Modifications of graphene inks made from chemical reduction cannot only enable cost-effective processing for printable electronics but also extend the applications into, for example, self-assembly of graphene via bottom-up nano-architecture and surface energy engineering of the graphenes. To fabricate useful devices, understanding the surface properties of graphene inks is very important. It is the first paper of this kind to study the surface tension and adhesion of graphene influenced by different functional groups.

4.
Nanotechnology ; 21(43): 435702, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20876981

RESUMEN

Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

5.
Lab Chip ; 9(15): 2123-31, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19606287

RESUMEN

The general mechanism of chemical sensing is based on molecular recognition linked to different transduction strategies based on electrochemical, optical, gravimetric or thermal effects that can convert the signal to digital information. Electrochemical sensors support accurate, fast, and inexpensive analytical methods with the advantages of being easily embedded and integrated into electronics, and having the greatest potential impact in the areas of healthcare, environmental monitoring (e.g. electronic noses), food packaging and many other applications (E. Bakker and Y. Qin, Anal. Chem., 2006, 78, 3965). Nanoscale electrochemical biosensors offer a new scope and opportunity in analytical chemistry. The reduction in the size of electrochemical biosensors to nanoscale dimensions expands their analytical capability, allowing the exploration of nanoscopic domains, measurements of local concentration profiles, detection in microfluidic systems and in vivo monitoring of neurochemical events by detection of stimulated dopamine release (R. Kennedy, L. Huang, M. Atkinson and P. Dush, Anal. Chem., 1993, 65, 1882). This article reviews both state of art developments in electrochemical nanosensing, and the industrial outlook.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Nanoestructuras , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Propiedades de Superficie
6.
Soft Matter ; 3(2): 230-237, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-32680270

RESUMEN

We demonstrate the self-organization of phase-separated polymer microstructures on two-dimensionally chemically patterned surfaces. Pattern replication is expected when both the blend composition ratio matches the surface patterning area ratio, and the pattern periodicity matches the natural phase separation length scale. By varying film thickness and blend composition, we show that ordered morphologies also result for contrary situations, resulting in the formation of a rich variety of hierarchically-ordered microstructures. This hierarchy suggests that non-equilibrium structures generated by incomplete phase separation of blend components are locked in by rapid solvent quenching during casting.

7.
ACS Nano ; 11(6): 5547-5557, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28558187

RESUMEN

Colloidal quantum dots (QDs) combined with a graphene charge transducer promise to provide a photoconducting platform with high quantum efficiency and large intrinsic gain, yet compatible with cost-efficient polymer substrates. The response time in these devices is limited, however, and fast switching is only possible by sacrificing the high sensitivity. Furthermore, tuning the QD size toward infrared absorption using conventional organic capping ligands progressively reduces the device performance characteristics. Here we demonstrate methods to couple large QDs (>6 nm in diameter) with organometal halide perovskites, enabling hybrid graphene phototransistor arrays on plastic foils that simultaneously exhibit a specific detectivity of 5 × 1012 Jones and high video-frame-rate performance. PbI2 and CH3NH3I co-mediated ligand exchange in PbS QDs improves surface passivation and facilitates electronic transport, yielding faster charge recovery, whereas PbS QDs embedded into a CH3NH3PbI3 matrix produce spatially separated photocarriers leading to large gain.

8.
Chem Commun (Camb) ; 48(9): 1239-41, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22170354

RESUMEN

Graphite was electrochemically exfoliated in mixtures of room temperature ionic liquids and deionized water containing lithium salts to produce functionalized graphenes and such an electrochemical exfoliation technique can be directly used in making primary battery electrodes with significantly enhanced specific energy capacity.

9.
Adv Mater ; 23(5): 673-8, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21274919

RESUMEN

Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Mecánicos , Ensayo de Materiales , Compuestos Orgánicos/química , Propiedades de Superficie
10.
Science ; 323(5910): 130-3, 2009 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-19119235

RESUMEN

Iridescence, the change in hue of a surface with varying observation angles, is used by insects, birds, fish, and reptiles for species recognition and mate selection. We identified iridescence in flowers of Hibiscus trionum and Tulipa species and demonstrated that iridescence is generated through diffraction gratings that might be widespread among flowering plants. Although iridescence might be expected to increase attractiveness, it might also compromise target identification because the object's appearance will vary depending on the viewer's perspective. We found that bumblebees (Bombus terrestris) learn to disentangle flower iridescence from color and correctly identify iridescent flowers despite their continuously changing appearance. This ability is retained in the absence of cues from polarized light or ultraviolet reflectance associated with diffraction gratings.


Asunto(s)
Abejas/fisiología , Flores , Hibiscus , Fenómenos Ópticos , Pigmentación , Tulipa , Animales , Color , Percepción de Color , Señales (Psicología) , Flores/citología , Hibiscus/citología , Pigmentos Biológicos , Epidermis de la Planta/citología , Polinización , Análisis Espectral , Tulipa/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA