Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Sci ; 112(1): 217-230, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33068069

RESUMEN

In lung cancer, CD133+ cells represent the subset of cancer stem cells (CSC) able to sustain tumor growth and metastatic dissemination. CSC function is tightly regulated by specialized niches composed of both stromal cells and extracellular matrix (ECM) proteins, mainly represented by collagen. The relevance of collagen glycosylation, a fundamental post-translational modification controlling several biological processes, in regulating tumor cell phenotype remains, however, largely unexplored. To investigate the bioactive effects of differential ECM glycosylation on lung cancer cells, we prepared collagen films functionalized with glucose (Glc-collagen) and galactose (Gal-collagen) exploiting a neoglycosylation approach based on a reductive amination of maltose and lactose with the amino residues of collagen lysines. We demonstrate that culturing of tumor cells on collagen determines a glycosylation-dependent positive selection of CSC and triggers their expansion/generation. The functional relevance of CD133+ CSC increase was validated in vivo, proving an augmented tumorigenic and metastatic potential. High expression of integrin ß1 in its active form is associated with an increased proficiency of tumor cells to sense signaling from glycosylated matrices (glyco-collagen) and to acquire stemness features. Accordingly, inhibition of integrin ß1 in tumor cells prevents CSC enrichment, suggesting that binding of integrin ß1 to Glc-collagen subtends CSC expansion/generation. We provide evidence suggesting that collagen glycosylation could play an essential role in modulating the creation of a niche favorable for the generation and selection/survival of lung CSC. Interfering with this crosstalk may represent an innovative therapeutic strategy for lung cancer treatment.


Asunto(s)
Colágeno/metabolismo , Integrina beta1/metabolismo , Neoplasias Pulmonares/metabolismo , Células Madre Neoplásicas/metabolismo , Células A549 , Antígeno AC133/metabolismo , Animales , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicosilación , Humanos , Pulmón/metabolismo , Ratones , Ratones SCID , Transducción de Señal/fisiología
2.
Int J Cancer ; 144(11): 2746-2761, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30426475

RESUMEN

miRNAs play a central role in the complex signaling network of cancer cells with the tumor microenvironment. Little is known on the origin of circulating miRNAs and their relationship with the tumor microenvironment in lung cancer. Here, we focused on the cellular source and relative contribution of different cell types to circulating miRNAs composing our risk classifier of lung cancer using in vitro/in vivo models and clinical samples. A cell-type specific expression pattern and topography of several miRNAs such as mir-145 in fibroblasts, mir-126 in endothelial cells, mir-133a in skeletal muscle cells was observed in normal and lung cancer tissues. Granulocytes and platelets are the major contributors of miRNAs release in blood. miRNAs modulation observed in plasma of lung cancer subjects was consistent with de-regulation of the same miRNAs observed during immunosuppressive conversion of immune cells. In particular, activated neutrophils showed a miRNA profile mirroring that observed in plasma of lung cancer subjects. Interestingly mir-320a secreted by neutrophils of high-risk heavy-smokers promoted an M2-like protumorigenic phenotype through downregulation of STAT4 when shuttled into macrophages. These findings suggest a multifactorial and nonepithelial cell-autonomous origin of circulating miRNAs associated with risk of lung cancer and that circulating miRNAs may act in paracrine signaling with causative role in lung carcinogenesis and immunosuppression.


Asunto(s)
MicroARN Circulante/metabolismo , Neoplasias Pulmonares/inmunología , Macrófagos/inmunología , MicroARNs/metabolismo , Escape del Tumor/genética , Animales , Carcinogénesis/inmunología , Línea Celular Tumoral , MicroARN Circulante/sangre , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Pulmón/patología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones SCID , MicroARNs/sangre , Neutrófilos/inmunología , Neutrófilos/metabolismo , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/metabolismo , Fumar Tabaco/sangre , Fumar Tabaco/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
BMC Cancer ; 18(1): 899, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30227835

RESUMEN

BACKGROUND: Interactions between cancer cells and the surrounding microenvironment are crucial determinants of cancer progression. During this process, bi-directional communication among tumor cells and cancer associated fibroblasts (CAF) regulate extracellular matrix (ECM) deposition and remodeling. As a result of this dynamic process, soluble ECM proteins can be released into the bloodstream and may represent novel circulating biomarkers useful for cancer diagnosis. The aim of the present study was to measure the levels of three circulating ECM related proteins (COL11A1, COL10A1 and SPARC) in plasma samples of lung cancer patients and in healthy heavy-smokers controls and test whether such measurements have diagnostic or prognostic value. METHODS: Gene expression profiling of lung fibroblasts isolated from paired normal and cancer tissue of NSCLC patients was performed by gene expression microarrays. The prioritization of the candidates for the study of circulating proteins in plasma was based on the most differentially expressed genes in cancer associated fibroblasts. Soluble ECM proteins were assessed by western blot in the conditioned medium of lung fibroblasts and by ELISA assays in plasma samples. RESULTS: Plasma samples from lung cancer patients and healthy heavy-smokers controls were tested for levels of COL11A1 and COL10A1 (n = 57 each) and SPARC (n = 90 each). Higher plasma levels of COL10A1 were detected in patients (p ≤ 0.001), a difference that was driven specifically by females (p < 0.001). No difference in COL11A1 levels between patients and controls was found. SPARC levels were also higher in plasma patients than controls (p < 0.001) with good performance in discriminating the two groups (AUC = 0.744). No significant association was observed between plasma proteins levels and clinicopathological features or survival. CONCLUSION: Soluble factors related to proficient tumor-stroma cross-talk are detectable in plasma of primary lung cancer patients and may represent a valuable complementary diagnostic tool to discriminate lung cancer patients from healthy heavy-smokers individuals as shown for the SPARC protein.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/sangre , Colágeno Tipo XI/sangre , Colágeno Tipo X/sangre , Osteonectina/sangre , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/sangre , Supervivencia sin Enfermedad , Matriz Extracelular , Proteínas de la Matriz Extracelular/sangre , Proteínas de la Matriz Extracelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Caracteres Sexuales , Fumadores
4.
Semin Cancer Biol ; 35: 96-106, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26320408

RESUMEN

Cancer is a complex disease, driven by the accumulation of several somatic aberrations but fostered by a two-way interaction between tumour cells and the surrounding microenvironment. Cancer associated fibroblasts (CAFs) represent one of the major players in tumour-stroma crosstalk. Recent in vitro and in vivo studies, often conducted by employing high throughput approaches, have started unravelling the key pathways involved in their functional effects. This review focus on open challenges in the study of CAF properties and function, highlighting at the same time the existence of common mechanisms as well as peculiarities in different cancer types (breast, prostate and lung cancer). Although still limited by current experimental models, which are unable to deal with the full level of complexity of the tumour microenvironment, a better understanding of these mechanisms may enable the identification of new biomarkers and therapeutic targets, to improve current strategies for cancer diagnosis and treatment.


Asunto(s)
Comunicación Celular , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/patología , Células del Estroma/metabolismo , Microambiente Tumoral , Animales , Biomarcadores , Comunicación Celular/genética , Matriz Extracelular , Fibroblastos/patología , Humanos , Metaanálisis como Asunto , Neoplasias/metabolismo , Transducción de Señal , Células del Estroma/patología , Transcriptoma , Microambiente Tumoral/genética
5.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458638

RESUMEN

BACKGROUND: Epithelial to mesenchymal transition (EMT) endows cancer cells with pro-metastatic properties, which appear most effective when cells enter an intermediate hybrid (H) state, characterized by integrated mesenchymal (M) and epithelial (E) traits. The reasons for this advantage are poorly known and, especially, it is totally unexplored whether the interplay between H-cells and NK cells could have a role. Here we characterize the pro-metastatic mechanics of non-small cell lung cancer (NSCLC) H-cells and their subset of cancer-initiating cells (CICs), dissecting crucial interactions with NK cells. METHODS: Human lung cancer cell lines and sublines representative of E, M, or H states, assessed by proteomics, were analyzed in vivo for their tumor-forming and disseminating capabilities. Interactions with NK cells were investigated in vitro using migration assays, cytotoxic degranulation assays, and evaluation of CD133+ CICs modulation after coculture, and validated in vivo through NK cell neutralization assays. Correlation between EMT status, NK cell infiltration, and survival data, was evaluated in a cohort of surgically resected NSCLC cases (n=79). RESULTS: We demonstrated that H-cells, have limited dissemination capability but show the highest potential to initiate metastases in vivo. This property was related to their ability to escape NK cell surveillance. Mechanistically, H-cells expressed low levels of NK-attracting chemokines (CXCL1 and CXCL8), generating poorly infiltrated metastases. Accordingly, proteomics and GO enrichment analysis of E, H, M cell lines showed that the related secretory processes could change during EMT.Furthermore, H-CICs uniquely expressed high levels of the inhibitory ligand B7-H3, which protected H-CIC from NK cell-mediated clearance. In vivo neutralization assays confirmed that, indeed, the pro-metastatic properties of H-cells are poorly controlled by NK cells.Finally, the analysis of patients revealed that detection of hybrid phenotypes associated with low NK infiltration in NSCLC clinical specimens could identify a subset of patients with poor prognosis. CONCLUSIONS: Our study demonstrates that H-cells play a central role in the metastatic spread in NSCLC. Such pro-metastatic advantage of H-cells is supported by their altered interaction with NK cells and by the critical role of B7-H3 in preserving their H-CIC component, indicating B7-H3 as a potential target in combined NK-based therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Transición Epitelial-Mesenquimal , Células Asesinas Naturales , Factores de Transcripción
6.
Proc Natl Acad Sci U S A ; 106(38): 16281-6, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19805294

RESUMEN

The identification of lung tumor-initiating cells and associated markers may be useful for optimization of therapeutic approaches and for predictive and prognostic information in lung cancer patients. CD133, a surface glycoprotein linked to organ-specific stem cells, was described as a marker of cancer-initiating cells in different tumor types. Here, we report that a CD133+, epithelial-specific antigen-positive (CD133+ESA+) population is increased in primary nonsmall cell lung cancer (NSCLC) compared with normal lung tissue and has higher tumorigenic potential in SCID mice and expression of genes involved in stemness, adhesion, motility, and drug efflux than the CD133(-) counterpart. Cisplatin treatment of lung cancer cells in vitro resulted in enrichment of CD133+ fraction both after acute cytotoxic exposure and in cells with stable cisplatin-resistant phenotype. Subpopulations of CD133+ABCG2+ and CD133+CXCR4+ cells were spared by in vivo cisplatin treatment of lung tumor xenografts established from primary tumors. A tendency toward shorter progression-free survival was observed in CD133+ NSCLC patients treated with platinum-containing regimens. Our results indicate that chemoresistant populations with highly tumorigenic and stem-like features are present in lung tumors. The molecular features of these cells may provide the rationale for more specific therapeutic targeting and the definition of predictive factors in clinical management of this lethal disease.


Asunto(s)
Antígenos CD/metabolismo , Cisplatino/farmacología , Glicoproteínas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Péptidos/metabolismo , Antígeno AC133 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptores CXCR4/metabolismo , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nat Struct Mol Biol ; 29(6): 549-562, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35606517

RESUMEN

Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.


Asunto(s)
Cromatina , Histonas , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Ritmo Circadiano/fisiología , Retroalimentación , Histonas/metabolismo , Mamíferos/genética , Ratones , Nucleosomas
8.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35337095

RESUMEN

Despite improvements in therapies and screening strategies, lung cancer prognosis still remains dismal, especially for metastatic tumors. Cancer stem cells (CSCs) are endowed with properties such as chemoresistance, dissemination, and stem-like features, that make them one of the main causes of the poor survival rate of lung cancer patients. MicroRNAs (miRNAs), small molecules regulating gene expression, have a role in lung cancer development and progression. In particular, miR-486-5p is an onco-suppressor miRNA found to be down-modulated in the tumor tissue of lung cancer patients. In this study, we investigate the role of this miRNA in CD133+ lung CSCs and evaluate the therapeutic efficacy of coated cationic lipid-nanoparticles entrapping the miR-486-5p miRNA mimic (CCL-486) using lung cancer patient-derived xenograft (PDX) models. In vitro, miR-486-5p overexpression impaired the PI3K/Akt pathway and decreased lung cancer cell viability. Moreover, miR-486-5p overexpression induced apoptosis also in CD133+ CSCs, thus affecting the in vivo tumor-initiating properties of these cells. Finally, we demonstrated that in vivo CCL-486 treatment decreased CD133+ percentage and inhibited tumor growth in PDX models. In conclusion, we provided insights on the efficacy of a novel miRNA-based compound to hit CD133+ lung CSCs, setting the basis for new combined therapeutic strategies.

9.
Am J Respir Crit Care Med ; 179(1): 69-74, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18787214

RESUMEN

RATIONALE: Free circulating plasma DNA has emerged as a potential biomarker for early lung cancer detection. In a previous case-control study we have shown that high levels of plasma DNA are a strong risk factor for lung cancer. OBJECTIVES: To assess the diagnostic performance and prognostic value of plasma DNA levels in a cohort of 1,035 heavy smokers monitored by annual spiral computed tomography (CT) for 5 years. METHODS: Plasma DNA levels were determined through real-time quantitative PCR at baseline and at time of lung cancer diagnosis. Screening performance of the assay was calculated through the area under the receiver-operating characteristic curve (AUC-ROC). Kaplan-Meier analyses were computed for association with prognosis. MEASUREMENTS AND MAIN RESULTS: Median baseline concentration of plasma DNA was not different in individuals who developed CT-detected lung cancers in the 5-year period (n = 38) versus cancer-free control subjects (AUC-ROC, 0.496; P = 0.9330), and only slightly higher at the time of cancer diagnosis (AUC-ROC, 0.607; P = 0.0369). At surgery, plasma DNA was higher in tumors detected at baseline (AUC-ROC, 0.80; P < 0.0001) and in Stage II to IV tumors detected during the first 2 years of screening (AUC-ROC, 0.87; P < 0.0001). A longitudinal study of plasma DNA levels showed increased values approaching to lung cancer diagnosis (P = 0.0010). Higher plasma DNA was significantly associated with poorer 5-year survival (P = 0.0066). CONCLUSIONS: Baseline assessment of plasma DNA level does not improve the accuracy of lung cancer screening by spiral CT in heavy smokers. Higher levels of plasma DNA at surgery might represent a risk factor for aggressive disease.


Asunto(s)
ADN de Neoplasias/sangre , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico por imagen , Anciano , Área Bajo la Curva , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Análisis de Supervivencia , Tomografía Computarizada por Rayos X/métodos
10.
Am J Respir Crit Care Med ; 179(5): 396-401, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19096006

RESUMEN

RATIONALE: Fragile histidine triad (FHIT) is a tumor suppressor gene involved in the pathogenesis of lung cancer. OBJECTIVES: The purpose of this study was to investigate the different molecular alterations leading to the inactivation of FHIT gene function and to validate their use as biomarkers of risk for progression of the disease in patients belonging to the multicentric European study for the Early detection of Lung Cancer (EUELC) who were resected for early-stage lung tumors. METHODS: FHIT immunostaining was performed on 305 tumor samples. The methylation status of FHIT promoter was assessed by nested methylation-specific polymerase chain reaction (MSP-PCR) in 232 tumor and 225 normal lung samples of which a subset of 187 patients had available normal/tumor DNA pairs. Loss of heterozygosity (LOH) at the FHIT locus was analyzed in 202 informative cases by D3S1300 and D3S1234 microsatellite markers. MEASUREMENTS AND MAIN RESULTS: Lost or reduced FHIT expression was found in 36.7 and 75.7% of the tumor samples, respectively. Methylation of the FHIT promoter was found in 36.7% of tumor and 32.7% of normal lung samples, whereas LOH was detected in 61.9% of the tumors. A strong association with complete loss of FHIT expression was present when methylation and LOH were analyzed together (P = 0.0064). Loss of FHIT protein expression was significantly more frequent in squamous cell carcinoma histotype (P < 0.0001) and in smokers (P = 0.008). FHIT methylation in normal lung was associated with an increased risk of progressive disease (OR, 2.27; P = 0.0415). CONCLUSIONS: Our results indicate that different molecular mechanisms interplay to inactivate FHIT expression and support the proposition that FHIT methylation in normal lung tissue could represent a prognostic marker for progressive disease.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Biomarcadores de Tumor/genética , Genes Supresores de Tumor , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Ácido Anhídrido Hidrolasas/biosíntesis , Anciano , Biomarcadores de Tumor/biosíntesis , Estudios de Casos y Controles , Metilación de ADN , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/biosíntesis , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Medición de Riesgo
11.
J Hematol Oncol ; 11(1): 45, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558956

RESUMEN

BACKGROUND: Fibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors. Nonetheless, little is still known about specific determinants of fibroblast pro-tumorigenic activity in lung cancer. Here, we aimed at understanding the role of miRNAs, which are often altered in stromal cells, in reprogramming fibroblasts towards a tumor-supporting phenotype. METHODS: We employed a co-culture-based high-throughput screening to identify specific miRNAs modulating the pro-tumorigenic potential of lung fibroblasts. Multiplex assays and ELISA were instrumental to study the effect of miRNAs on the secretome of both primary and immortalized lung fibroblasts from lung cancer patients and to evaluate plasmatic levels of HGF in heavy smokers. Direct mRNA targeting by miRNAs was investigated through dual-luciferase reporter assay and western blot. Finally, the pro-tumorigenic activity of fibroblasts and their conditioned media was tested by employing in vitro migration experiments and mouse xenografts. RESULTS: We identified miR-16 as a master regulator of fibroblast secretome and showed that its upregulation reduces HGF secretion by fibroblasts, impairing their capacity to promote cancer cell migration. This effect is due to a pleiotropic activity of miR-16 which prevents HGF expression through direct inhibition of FGFR-1 signaling and targeting of HGF mRNA. Mechanistically, miR-16 targets FGFR-1 downstream mediator MEK1, thus reducing ERK1/2 activation. Consistently, chemical or genetic inhibition of FGFR-1 mimics miR-16 activity and prevents HGF production. Of note, we report that primary fibroblast cell lines derived from lungs of heavy smokers express reduced miR-16 levels compared to those from lungs not exposed to smoke and that HGF concentration in heavy smokers' plasma correlates with levels of tobacco exposure. Finally, in vivo experiments confirmed that restoration of miR-16 expression in fibroblasts reduced their ability to promote tumor growth and that HGF plays a central role in the pro-tumorigenic activity of fibroblasts. CONCLUSIONS: Overall, these results uncover a central role for miR-16 in regulating HGF production by lung fibroblasts, thus affecting their pro-tumorigenic potential. Correlation between smoking exposure and miR-16 levels could provide novel clues regarding the formation of a tumor-proficient milieu during the early phases of lung cancer development.


Asunto(s)
Fibroblastos/metabolismo , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Pulmón/metabolismo , MicroARNs/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Femenino , Pulmón/patología , Ratones
12.
Eur J Surg Oncol ; 43(12): 2315-2323, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29111365

RESUMEN

BACKGROUND: Extensive clinical experience has demonstrated the potential usefulness of autologous fat tissue (AFT) graft in tissue reconstruction, repair or regeneration. In the present study, we evaluated the feasibility and safety of AFT in the repair of surgically injured lung surface. METHODS: Eighty consecutive procedures of pulmonary metastasectomy by laser precision resection, were performed in 66 patients between March 2010 and December 2012. In the first 20 procedures, AFT graft was applied on the wounded pulmonary surface without closure of parenchymal surface. The following 40 procedures were carried on without AFT (20 leaving the resection margins open and 20 closing the resection margins with a running suture). In the remaining 20 procedures, AFT was applied and the resection margins closed. The efficacy of this technique was evaluated by comparing the AFT group with the non-AFT group, with respect to prolonged alveolar air leakage (PAAL), time to drain removal, length of hospital stay, and patient survival at four years. RESULTS: The occurrence of PAAL was lower in the AFT group as compared to non-AFT group (17.5% versus 42.5%, p = 0.027), and median time to drain removal shorter (4 versus 6 days respectively, p = 0.016). Overall 4-year survival was 70% for AFT group, and 59% for non-AFT group (p = 0.34). CONCLUSIONS: This prospective cohort observational study demonstrated the feasibility and safety of AFT pulmonary grafting after laser metastasectomy. AFT graft improved pulmonary healing, by reducing the incidence and severity of PAAL. Moreover, there was no evidence of tumor promotion in the metastatic setting, with a similar overall survival at 4 years.


Asunto(s)
Tejido Adiposo/trasplante , Terapia por Láser/métodos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/cirugía , Metastasectomía/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Determinación de Punto Final , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Toracotomía , Trasplante Autólogo , Resultado del Tratamiento , Cicatrización de Heridas
13.
Cancer Res ; 77(4): 851-861, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979840

RESUMEN

Clinical efficacy of PD-1/PD-L1 targeting relies upon the reactivation of tumor-specific but functionally impaired PD-1+ T cells present before therapy. Thus, analyzing early-stage primary tumors may reveal the presence of T cells that are not yet functionally impaired. In this study, we report that activated (HLA-DR+) T cells with an effector memory (TEM) profile are enriched in such lesions. Tumor-infiltrating lymphocytes coexpressed PD-1 with the inhibitory receptors TIM-3, CTLA-4, LAG-3, and TIGIT, but also displayed a recently activated, nonexhausted phenotype. We also identified a subset of CD8+PD-1+FOXP3+ T lymphocytes at the earliest phase of functional differentiation after priming, termed "early effector cells" (EEC), which also exhibited an activated nonexhausted phenotype, but was less differentiated and associated with coexpression of multiple inhibitory receptors. In response to autologous tumor, EECs upregulated CD107a, produced IL2 and IFNγ, and were competent for differentiation. The identification of EECs marked by inhibitory receptor expression at tumor sites will enable investigations of early stages of adaptive antitumor immunity, as well as support the rationale for administering immunotherapy in early-stage non-small cell lung cancer. Cancer Res; 77(4); 851-61. ©2016 AACR.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Antígenos CD/análisis , Antígeno CTLA-4/análisis , Factores de Transcripción Forkhead/análisis , Antígenos HLA-DR/análisis , Receptor 2 Celular del Virus de la Hepatitis A/análisis , Humanos , Interferón gamma/biosíntesis , Interleucina-2/biosíntesis , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Receptor de Muerte Celular Programada 1/análisis , Receptores Inmunológicos/análisis , Proteína del Gen 3 de Activación de Linfocitos
14.
Mol Oncol ; 10(2): 253-71, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26514616

RESUMEN

Cancer cells within a tumor are functionally heterogeneous and specific subpopulations, defined as cancer initiating cells (CICs), are endowed with higher tumor forming potential. The CIC state, however, is not hierarchically stable and conversion of non-CICs to CICs under microenvironment signals might represent a determinant of tumor aggressiveness. How plasticity is regulated at the cellular level is however poorly understood. To identify determinants of plasticity in lung cancer we exposed eight different cell lines to TGFß1 to induce EMT and stimulate modulation of CD133(+) CICs. We show that response to TGFß1 treatment is heterogeneous with some cells readily switching to stem cell state (1.5-2 fold CICs increase) and others being unresponsive to stimulation. This response is unrelated to original CICs content or extent of EMT engagement but is tightly dependent on balance between epithelial and mesenchymal features as measured by the ratio of expression of CDH1 (E-cadherin) to SNAI2. Epigenetic modulation of this balance can restore sensitivity of unresponsive models to microenvironmental stimuli, including those elicited by cancer-associated fibroblasts both in vitro and in vivo. In particular, tumors with increased prevalence of cells with features of partial EMT (hybrid epithelial/mesenchymal phenotype) are endowed with the highest plasticity and specific patterns of expression of SNAI2 and CDH1 markers identify a subset of tumors with worse prognosis. In conclusion, here we describe a connection between a hybrid epithelial/mesenchymal phenotype and conversion to stem-cell state in response to external stimuli. These findings have implications for current endeavors to identify tumors with increased plasticity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/patología , Factores de Transcripción/metabolismo , Microambiente Tumoral , Antígeno AC133 , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Plasticidad de la Célula , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Femenino , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Péptidos/metabolismo , Fenotipo , Cultivo Primario de Células , Factores de Transcripción de la Familia Snail , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral/genética
15.
Oncotarget ; 7(50): 82324-82337, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27384989

RESUMEN

Senescence in cancer cells acts as a tumor suppressor, whereas in fibroblasts enhances tumor growth. Senescence has been reported in tumor associated fibroblasts (TAFs) from a growing list of cancer subtypes. However, the presence of senescent TAFs in lung cancer remains undefined. We examined senescence in TAFs from primary lung cancer and paired control fibroblasts from unaffected tissue in three major histologic subtypes: adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC). Three independent senescence markers (senescence-associated beta-galactosidase, permanent growth arrest and spreading) were consistently observed in cultured LCC-TAFs only, revealing a selective premature senescence. Intriguingly, SCC-TAFs exhibited a poor growth response in the absence of senescence markers, indicating a dysfunctional phenotype rather than senescence. Co-culturing normal fibroblasts with LCC (but not ADC or SCC) cancer cells was sufficient to render fibroblasts senescent through oxidative stress, indicating that senescence in LCC-TAFs is driven by heterotypic signaling. In addition, senescent fibroblasts provided selective growth and invasive advantages to LCC cells in culture compared to normal fibroblasts. Likewise, senescent fibroblasts enhanced tumor growth and lung dissemination of tumor cells when co-injected with LCC cells in nude mice beyond the effects induced by control fibroblasts. These results define the subtype-specific aberrant phenotypes of lung TAFs, thereby challenging the common assumption that lung TAFs are a heterogeneous myofibroblast-like cell population regardless of their subtype. Importantly, because LCC often distinguishes itself in the clinic by its aggressive nature, we argue that senescent TAFs may contribute to the selective aggressive behavior of LCC tumors.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Células Grandes/metabolismo , Senescencia Celular , Neoplasias Pulmonares/metabolismo , Miofibroblastos/metabolismo , Comunicación Paracrina , Animales , Fibroblastos Asociados al Cáncer/patología , Carcinoma de Células Grandes/patología , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Forma de la Célula , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones Desnudos , Persona de Mediana Edad , Miofibroblastos/patología , Invasividad Neoplásica , Estrés Oxidativo , Fenotipo , Transducción de Señal , Factores de Tiempo , Microambiente Tumoral , beta-Galactosidasa/metabolismo
16.
Oncogene ; 23(56): 9102-10, 2004 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-15489891

RESUMEN

The expression of the tumour suppressor protein fragile histidine triad (Fhit) is often impaired in many human cancers and its restoration in Fhit-negative cancer cell lines suppresses tumorigenicity and induces apoptosis. Although the proapoptotic function of Fhit is well documented, little is known about its precise mechanism of action and further studies are needed in order to elucidate the putative therapeutic properties of this protein. To this end, we have engineered the lung cancer cell line NCI-H460 in order to express different molecules involved in the control of apoptotic pathways. Infection of these cells with an adenoviral vector transducing the Fhit gene (Ad-Fhit) revealed that complete protection from apoptosis was conferred by the inhibitor of caspases Cytokine response modifier A (CrmA) and by a dominant-negative form of the adapter protein Fas-associated death domain (FADD) and partial protection by a dominant-negative form of caspase-8, while cells over expressing mitochondrial mediators of the apoptotic response such as Bcl-2 or Bcl-x(L) that are resistant to treatment with cisplatin, remained highly susceptible to cell death triggered by Fhit gene transfer. In line to what was observed in H460 cells, Ad-Fhit efficacy was not affected by Bcl-2 overexpression also in two other lung cancer cell lines (A549 and Calu-1). Analysis of cytochrome c release also confirmed that in Bcl-2- or Bcl-x(L)-expressing cells apoptosis could be detected by terminal deoxynucleotidyl-transferase mediated dUTP nick-end labelling (TUNEL) assay before any evidence of mitochondrial membrane perturbation. In conclusion, our analysis indicates that the Fhit protein exerts its oncosuppressor activity through induction of an apoptotic mechanism that seems to be FADD dependent, caspase-8 mediated and independent from mitochondrial amplification.


Asunto(s)
Ácido Anhídrido Hidrolasas/fisiología , Apoptosis/fisiología , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/fisiología , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Caspasa 8 , Caspasas/metabolismo , Línea Celular Tumoral , Citocromos c/metabolismo , Activación Enzimática , Humanos , Etiquetado Corte-Fin in Situ , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/metabolismo
17.
Oncogene ; 23(52): 8439-46, 2004 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-15361849

RESUMEN

Abnormalities in the expression of the tumour suppressor fragile histidine triad (FHIT) gene have been reported in a variety of human tumours, including lung cancer and restoration of its expression in cancer cell lines resulted in the inhibition of proliferation and apoptosis induction. Most of the studies that have assigned a proapoptotic role to the FHIT gene were performed in adenoviral-FHIT-transduced cancer cells expressing high levels of the Fhit protein. The present work was the first study designed to investigate the effects of FHIT gene replacement in a human FHIT-negative non-small-cell lung cancer (NSCLC) cell line (Calu-1) by using a hormone-inducible expression system that allows tight modulation of the transgene expression. Through this approach, we demonstrated that a prolonged induction was required to accumulate the Fhit protein at levels adequate to promote a significant decrease of cell proliferation. Analysis of cell-cycle phase distribution showed an accumulation of cells in the G0/G1 phase and a concomitant decrease in the S phase. Moreover, an upregulation of p21waf1 transcript was found, which could account for the alteration of the cycling properties of the cells. The growth-inhibitory effects observed were not associated with apoptosis appearance, and although in these conditions the Fhit protein content was higher than in normal bronchial human epithelial cells (NHBE), it was still significantly lower than the level capable of inducing apoptosis in Calu-1 cells after adenoviral-mediated FHIT gene transfer. These results indicate that the tumour suppressor properties of Fhit are strictly related to its expression level and show that the Fhit protein has a dose-dependent antiproliferative effect on the Fhit-negative Calu-1 lung cancer cell line.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Ácido Anhídrido Hidrolasas/genética , Adenoviridae , Apoptosis/fisiología , División Celular/fisiología , Línea Celular Tumoral , Vectores Genéticos , Humanos , Cinética , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Transducción Genética , Transfección
18.
Clin Cancer Res ; 8(12): 3782-7, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12473590

RESUMEN

PURPOSE: The p16(INK4A) tumor suppressor gene is inactivated in many solid tumors, including non-small cell lung cancers (NSCLCs), through promoter hypermethylation. Presence of p16(INK4A) hypermethylation in precursor lesions of NSCLC and in body fluids of individuals at risk makes it a potential candidate for early disease detection. However, the current low sensitivity of p16(INK4A) hypermethylation detection in plasma limits its consideration in a diagnostic grid. EXPERIMENTAL DESIGN: A fluorescent methylation-specific PCR assay (F-MSP) was established to evaluate p16(INK4A) promoter hypermethylation in 35 NSCLC and paired plasma samples and in 15 plasmas from healthy donors. F-MSP sensitivity was investigated in combination with microsatellite alterations on 3p (evaluated by fluorescent PCR), K-ras mutations (determined by a mutant-enriched PCR), and quantification of circulating DNA. Assay results were analyzed by two-sided chi(2) or Fisher's exact tests. RESULTS: p16(INK4A) promoter hypermethylation, detectable by F-MSP in 22 of 35 NSLCs (63%) and in 12 of 22 (55%) plasmas from patients with methylated tumors, was independent of microsatellite alterations (detectable in 57% of tumors and 50% of paired plasmas), K-ras mutations (detectable in 31% of tumors but in no paired plasma), or amount of circulating DNA. p16(INK4A) methylation in association with microsatellite alterations identified 62% (18 of 29) of plasma samples from patients presenting the same alteration in their tumors, and its sensitivity increased to 80% when combined with the amount of circulating DNA. CONCLUSIONS: The establishment of F-MSP remarkably improved p16(INK4A) promoter hypermethylation detection in plasmas from NSCLC patients. Microsatellite alterations, circulating DNA quantification, and p16(INK4A) hypermethylation might contribute to a diagnostic grid for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Metilación de ADN , ADN de Neoplasias/sangre , Neoplasias Pulmonares/genética , Regiones Promotoras Genéticas/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Cromosomas Humanos Par 3/genética , Estudios de Cohortes , Femenino , Genes ras/genética , Humanos , Neoplasias Pulmonares/patología , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Estadificación de Neoplasias , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Tasa de Supervivencia , Células Tumorales Cultivadas
19.
Cancer Res ; 75(17): 3636-49, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26141860

RESUMEN

Metastasis is the main reason for lung cancer-related mortality, but little is known about specific determinants of successful dissemination from primary tumors and metastasis initiation. Here, we show that CD133(+)/CXCR4(+) cancer-initiating cells (CIC) directly isolated from patient-derived xenografts (PDX) of non-small cell lung cancer are endowed with superior ability to seed and initiate metastasis at distant organs. We additionally report that CXCR4 inhibition successfully prevents the increase of cisplatin-resistant CD133(+)/CXCR4(+) cells in residual tumors and their metastatization. Immunophenotypic analysis of lung tumor cells intravenously injected or spontaneously disseminated to murine lungs demonstrated the survival advantage and increased colonization ability of a specific subset of CD133(+)/CXCR4(+) with reduced expression of epithelial cell adhesion molecule (EpCAM(-)), which also shows the greatest in vitro invasive potential. We next prove that recovered disseminated cells from lungs of PDX-bearing mice enriched for CD133(+)/CXCR4(+)/EpCAM(-) CICs are highly tumorigenic and metastatic. Importantly, microenvironment stimuli eliciting epithelial-to-mesenchymal transition, including signals from cancer-associated fibroblasts, are able to increase the dissemination potential of lung cancer cells through the generation of the CD133(+)/CXCR4(+)/EpCAM(-) subset. These findings also have correlates in patient samples where disseminating CICs are enriched in metastatic lymph nodes (20-fold, P = 0.006) and their detection in primary tumors is correlated with poor clinical outcome (disease-free survival: P = 0.03; overall survival: P = 0.05). Overall, these results highlight the importance of specific cellular subsets in the metastatic process, the need for in-depth characterization of disseminating tumor cells, and the potential of therapeutic strategies targeting both primary tumor and tumor-microenvironment interactions.


Asunto(s)
Antígenos CD/biosíntesis , Antígenos de Neoplasias/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/genética , Moléculas de Adhesión Celular/biosíntesis , Glicoproteínas/biosíntesis , Neoplasias Pulmonares/genética , Receptores CXCR4/biosíntesis , Antígeno AC133 , Anciano , Anciano de 80 o más Años , Animales , Antígenos CD/genética , Antígenos de Neoplasias/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Linaje de la Célula , Cisplatino/administración & dosificación , Supervivencia sin Enfermedad , Molécula de Adhesión Celular Epitelial , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicoproteínas/genética , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Células Madre Neoplásicas/patología , Péptidos/genética , Receptores CXCR4/genética , Transducción de Señal/efectos de los fármacos
20.
Hum Gene Ther ; 13(17): 2051-64, 2002 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-12490000

RESUMEN

We have shown that adenovirus-mediated manipulation of apoptotic genes such as bax could be a therapeutic option for prostate cancer. Unfortunately, the response of experimental prostate tumors to a single therapeutic gene of the apoptotic pathway is short-lived, and most of these tumors relapse after a short period of time. In this investigation we present data generated with adenovirus AvARR(2)PB-Bad, in which the apoptotic gene bad was placed under the control of the dihydrotestosterone (DHT)-inducible third-generation probasin-derived promoter ARR(2)PB. This therapeutic virus was given alone or in combination with other therapeutic viruses to a variety of in vitro and in vivo experimental models of prostate cancer. On infection with AvARR(2)PB-Bad, DHT-induced Bad overexpression occurred specifically in androgen receptor-positive (AR(+)) cells of prostatic derivation. The apoptotic effect of AvARR(2)PB-Bad (group 1) was compared with that of AvARR(2)PB-Bax (which overexpresses the apoptotic protein Bax) (group 2), with that of the combination AvARR(2)PB-Bad plus AvARR(2)PB-Bax (group 3), and with that of the control virus AvARR(2)PB-CAT (group 4) in the cell line LNCaP. In addition to identifying the modality of apoptosis induction by overexpressed Bad, the results suggested that group 3 contained more apoptotic cells than any other group. In additional studies, AR(+) androgen-dependent LNCaP cells or AR(+) and androgen-independent C4-2 cells were injected subcutaneously into nude mice. Four groups of six LNCaP or C4-2 tumors were treated with the same combinations of viruses discussed above for groups 1, 2, 3, and 4. Treatment resulted in decreased tumor size in groups 1, 2, and 3 compared with group 4. There was a better response in group 3 compared with group 2, and in group 2 compared with group 1. A better response in group 3 was confirmed during a 8-week follow-up period, in which no treatment was administered. Two LNCaP and C4-2 tumors of group 3 disappeared at the end of treatment and did not recur after an 8-week follow-up period. The data suggest that polygene therapy with apoptotic molecules is more effective in experimental models of androgen-dependent or -independent prostate cancer than monogene therapy.


Asunto(s)
Proteínas Portadoras/genética , Terapia Genética , Neoplasias de la Próstata/terapia , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas/genética , Adenoviridae/genética , Animales , Apoptosis , Línea Celular , Dihidrotestosterona/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Desnudos , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Células Tumorales Cultivadas , Proteína X Asociada a bcl-2 , Proteína Letal Asociada a bcl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA