Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(11): e2112008119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263223

RESUMEN

SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.


Asunto(s)
Anticuerpos ampliamente neutralizantes , Anticuerpos contra la Hepatitis C , Hepatitis C , Inmunogenicidad Vacunal , Proteínas del Envoltorio Viral , Vacunas contra Hepatitis Viral , Animales , Anticuerpos ampliamente neutralizantes/biosíntesis , Anticuerpos ampliamente neutralizantes/sangre , Hepatitis C/prevención & control , Anticuerpos contra la Hepatitis C/biosíntesis , Anticuerpos contra la Hepatitis C/sangre , Ratones , Multimerización de Proteína , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/inmunología
2.
Mol Pharm ; 21(2): 791-800, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38206583

RESUMEN

Studies on the biological performance of nanomedicines have been increasingly focused on the paradigm shifting role of the protein corona, which is imminently formed once the formulation is placed in a complex physiological environment. This phenomenon is predominantly studied in the context of protein adsorption science, while such interactions for water-soluble systems remain virtually unexplored. In particular, the importance of plasma protein binding is yet to be understood for pharmaceuticals designed on the basis of supramolecular architectures, which generally lack well-defined surfaces. Water-soluble ionic polyphosphazenes, clinically proven immunoadjuvants and vaccine delivery vehicles, represent an example of a system that requires supramolecular coassembly with antigenic proteins to attain an optimal immunopotentiating effect. Herein, the self-assembly behavior and stability of noncovalently bound complexes on the basis of a model antigen─hen egg lysozyme─and polyphosphazene adjuvant are studied in the presence of plasma proteins utilizing isothermal calorimetry, asymmetric flow field flow fractionation, dynamic light scattering, and size exclusion chromatography methods. The results demonstrate that although plasma proteins, such as human serum albumin (HSA), show detectable avidity to polyphosphazene, the strength of such interactions is significantly lower than that for the model antigen. Furthermore, thermodynamic parameters indicate different models of binding: entropy driven, which is consistent with the counterion release mechanism for albumin versus electrostatic interactions for lysozyme, which are characterized by beneficial enthalpy changes. In vitro protein release experiments conducted in Franz diffusion cells using enzyme-linked immunoassay detection suggest that the antigen-adjuvant complex stability is not adversely affected by the presence of the most physiologically abundant protein, which confirms the importance of the delivery modality for this immunoadjuvant. Moreover, HSA shows an unexpected stabilizing effect on complexes with high antigen load─an important consideration for further development of polyphosphazene adjuvanted vaccine formulations and their functional assessment.


Asunto(s)
Compuestos Organofosforados , Polímeros , Vacunas , Humanos , Polímeros/química , Proteínas Sanguíneas , Adyuvantes Inmunológicos/química , Agua
3.
Rev Med Virol ; 33(5): e2474, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37565536

RESUMEN

Globally, more than 58 million people are chronically infected with Hepatitis C virus (HCV) with 1.5 million new infections occurring each year. An effective vaccine for HCV is therefore a major unmet medical and public health need. Since HCV rapidly accumulates mutations, vaccines must elicit the production of broadly neutralising antibodies (bnAbs) in a reproducible fashion. Decades of research have generated a number of HCV vaccine candidates. Based on the available data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice, but robust induction of humoral and cellular responses leading to virus neutralisation has not yet been achieved. One issue that has arisen in developing an HCV vaccine (and many other vaccines as well) is the platform used for antigen delivery. The majority of viral vaccine trials have employed subunit vaccines. However, subunit vaccines often have limited immunogenicity, as seen for HCV, and thus multiple formats must be examined in order to elicit a robust anti-HCV immune response. Nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both arms of the immune system. This review discusses the potential for development of a nanoparticle-based HCV E1E2 vaccine, with an emphasis on the potential benefits of such an approach along with the major challenges facing the incorporation of E1E2 into nanoparticulate delivery systems and how those challenges can be addressed.


Asunto(s)
Hepatitis C , Vacunas contra Hepatitis Viral , Vacunas Virales , Humanos , Hepacivirus/genética , Anticuerpos Neutralizantes , Proteínas del Envoltorio Viral/genética , Hepatitis C/prevención & control
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431677

RESUMEN

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.


Asunto(s)
Hepacivirus/efectos de los fármacos , Anticuerpos contra la Hepatitis C/biosíntesis , Hepatitis C/prevención & control , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Neutralizantes/biosíntesis , Mapeo Epitopo , Epítopos/química , Epítopos/inmunología , Femenino , Expresión Génica , Hepacivirus/inmunología , Hepacivirus/patogenicidad , Hepatitis C/inmunología , Hepatitis C/patología , Hepatitis C/virología , Humanos , Inmunogenicidad Vacunal , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Receptores Virales/genética , Receptores Virales/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Solubilidad , Tetraspanina 28/genética , Tetraspanina 28/inmunología , Vacunación , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/administración & dosificación , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/genética
5.
Biomacromolecules ; 24(5): 2278-2290, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37071718

RESUMEN

Advanced multifunctional biomaterials are increasingly relying on clinically dictated patterns of selectivity against various biological targets. Integration of these frequently conflicting features into a single material surface may be best achieved by combining various complementary methodologies. Herein, a drug with a broad spectrum of activity, i.e., 4-methylumbelliferone (4-MU), is synthetically multimerized into water-soluble anionic macromolecules with the polyphosphazene backbone. The polymer structure, composition, and solution behavior are studied by 1H and 31P NMR spectroscopy, size-exclusion chromatography, dynamic light scattering, and UV and fluorescence spectrophotometry. To take advantage of the clinically proven hemocompatibility of fluorophosphazene surfaces, the drug-bearing macromolecule was then nanoassembled onto the surface of selected substrates in an aqueous solution with fluorinated polyphosphazene of the opposite charge using the layer-by-layer (LbL) technique. Nanostructured 4-MU-functionalized fluoro-coatings exhibited a strong antiproliferative effect on vascular smooth muscle cells (VSMCs) and fibroblasts with no cytotoxicity against endothelial cells. This selectivity pattern potentially provides the opportunity for highly desirable fast tissue healing while preventing the overgrowth of VSMCs and fibrosis. Taken together with the established in vitro hemocompatibility and anticoagulant activity, 4-MU-functionalized fluoro-coatings demonstrate potential for applications as restenosis-resistant coronary stents and artificial joints.


Asunto(s)
Células Endoteliales , Himecromona , Himecromona/farmacología , Propiedades de Superficie , Polímeros/farmacología , Materiales Biocompatibles Revestidos/química
6.
Molecules ; 28(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241958

RESUMEN

The inclusion of fluorine motifs in drugs and drug delivery systems is an established tool for modulating their biological potency. Fluorination can improve drug specificity or boost the vehicle's ability to cross cellular membranes. However, the approach has yet to be applied to vaccine adjuvants. Herein, the synthesis of fluorinated bioisostere of a clinical stage immunoadjuvant-poly[di(carboxylatophenoxy)phosphazene], PCPP-is reported. The structure of water-soluble fluoropolymer-PCPP-F, which contains two fluorine atoms per repeat unit-was confirmed using 1H, 31P and 19F NMR, and its molecular mass and molecular dimensions were determined using size-exclusion chromatography and dynamic light scattering. Insertion of fluorine atoms in the polymer side group resulted in an improved solubility in acidic solutions and faster hydrolytic degradation rate, while the ability to self-assemble with an antigenic protein, lysozyme-an important feature of polyphosphazene vaccine adjuvants-was preserved. In vivo assessment of PCPP-F demonstrated its greater ability to induce antibody responses to Hepatitis C virus antigen when compared to its non-fluorinated counterpart. Taken together, the superior immunoadjuvant activity of PCPP-F, along with its improved formulation characteristics, demonstrate advantages of the fluorination approach for the development of this family of macromolecular vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos , Flúor , Adyuvantes Inmunológicos/química , Adyuvantes de Vacunas , Polímeros/química , Compuestos Organofosforados/química
7.
Mol Pharm ; 19(9): 3358-3366, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35984034

RESUMEN

Cocaine is a highly addictive drug that has seen a steady uptrend causing severe health problems worldwide. Currently, there are no approved therapeutics for treating cocaine use disorder; hence, there is an urgent need to identify new medications. Immunopharmacotherapeutics is a promising approach utilizing endogenous antibodies generated through active vaccination, and if properly programmed, can blunt a drug's psychoactive and addictive effects. However, drug vaccine efficacy has largely been limited by the modest levels of antibodies induced. Herein, we explored an adjuvant system consisting of a polyphosphazene macromolecule, specifically poly[di(carboxylatoethylphenoxy)-phosphazene] (PCEP), a biocompatible synthetic polymer that was solicited for improved cocaine conjugate vaccine delivery performance. Our results demonstrated PCEP's superior assembling efficiency with a cocaine hapten as well as with the combined adjuvant CpG oligodeoxynucleotide (ODN). Importantly, this combination led to a higher titer response, balanced immunity, successful sequestering of cocaine in the blood, and a reduction in the drug in the brain. Moreover, a PCEP-cocaine conjugate vaccine was also found to function well via intranasal administration, where its efficacy was demonstrated through the antibody titer, affinity, mucosal IgA production, and a reduction in cocaine's locomotor activity. Overall, a comprehensive evaluation of PCEP integrated within a cocaine vaccine established an advance in the use of synthetic adjuvants in the drugs of abuse vaccine field.


Asunto(s)
Cocaína , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos/farmacología , Compuestos Organofosforados , Polímeros , Desarrollo de Vacunas , Vacunas Conjugadas
8.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364250

RESUMEN

The in vivo potency of polyphosphazene immunoadjuvants is inherently linked to the ability of these ionic macromolecules to assemble with antigenic proteins in aqueous solutions and form physiologically stable supramolecular complexes. Therefore, in-depth knowledge of interactions in this biologically relevant system is a prerequisite for a better understanding of mechanism of immunoadjuvant activity. Present study explores a self-assembly of polyphosphazene immunoadjuvant-PCPP and a model antigen-lysozyme in a physiologically relevant environment-saline solution and neutral pH. Three analytical techniques were employed to characterize reaction thermodynamics, water-solute structural organization, and supramolecular dimensions: isothermal titration calorimetry (ITC), water proton nuclear magnetic resonance (wNMR), and dynamic light scattering (DLS). The formation of lysozyme-PCPP complexes at near physiological conditions was detected by all methods and the avidity was modulated by a physical state and dimensions of the assemblies. Thermodynamic analysis revealed the dissociation constant in micromolar range and the dominance of enthalpy factor in interactions, which is in line with previously suggested model of protein charge anisotropy and small persistence length of the polymer favoring the formation of high affinity complexes. The paper reports advantageous use of wNMR method for studying protein-polymer interactions, especially for low protein-load complexes.


Asunto(s)
Protones , Agua , Agua/química , Muramidasa , Polielectrolitos , Dispersión Dinámica de Luz , Calorimetría/métodos , Polímeros/química , Termodinámica , Espectroscopía de Resonancia Magnética , Adyuvantes Inmunológicos
9.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32878891

RESUMEN

An effective vaccine for hepatitis C virus (HCV) is a major unmet need, and it requires an antigen that elicits immune responses to key conserved epitopes. Based on structures of antibodies targeting HCV envelope glycoprotein E2, we designed immunogens to modulate the structure and dynamics of E2 and favor induction of broadly neutralizing antibodies (bNAbs) in the context of a vaccine. These designs include a point mutation in a key conserved antigenic site to stabilize its conformation, as well as redesigns of an immunogenic region to add a new N-glycosylation site and mask it from antibody binding. Designs were experimentally characterized for binding to a panel of human monoclonal antibodies (HMAbs) and the coreceptor CD81 to confirm preservation of epitope structure and preferred antigenicity profile. Selected E2 designs were tested for immunogenicity in mice, with and without hypervariable region 1, which is an immunogenic region associated with viral escape. One of these designs showed improvement in polyclonal immune serum binding to HCV pseudoparticles and neutralization of isolates associated with antibody resistance. These results indicate that antigen optimization through structure-based design of the envelope glycoproteins is a promising route to an effective vaccine for HCV.IMPORTANCE Hepatitis C virus infects approximately 1% of the world's population, and no vaccine is currently available. Due to the high variability of HCV and its ability to actively escape the immune response, a goal of HCV vaccine design is to induce neutralizing antibodies that target conserved epitopes. Here, we performed structure-based design of several epitopes of the HCV E2 envelope glycoprotein to engineer its antigenic properties. Designs were tested in vitro and in vivo, demonstrating alteration of the E2 antigenic profile in several cases, and one design led to improvement of cross-neutralization of heterologous viruses. This represents a proof of concept that rational engineering of HCV envelope glycoproteins can be used to modulate E2 antigenicity and optimize a vaccine for this challenging viral target.


Asunto(s)
Hepacivirus/genética , Hepacivirus/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Línea Celular , Epítopos/química , Epítopos/inmunología , Femenino , Células HEK293 , Hepatitis C/inmunología , Hepatitis C/virología , Anticuerpos contra la Hepatitis C/sangre , Anticuerpos contra la Hepatitis C/inmunología , Humanos , Inmunogenicidad Vacunal , Ratones , Modelos Moleculares , Pruebas de Neutralización , Conformación Proteica , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/inmunología
10.
Mol Pharm ; 18(2): 726-734, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32530637

RESUMEN

Two well-defined synthetic polyphosphazene immunoadjuvants, PCPP and PCEP, were studied for their ability to potentiate the immune response to the hepatitis C virus (HCV) E2 glycoprotein antigen in vivo. We report that PCEP induced significantly higher serum neutralization and HCV-specific IgG titers in mice compared to other adjuvants used in the study: PCPP, Alum, and Addavax. PCEP also shifted the response toward the desirable balanced Th1/Th2 immunity, as evaluated by the antibody isotype ratio (IgG2a/IgG1). The in vivo results were analyzed in the context of antigen-adjuvant molecular interactions in the system and in vitro immunostimulatory activity of formulations. Asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) analysis showed that both PCPP and PCEP spontaneously self-assemble with the E2 glycoprotein with the formation of multimeric water-soluble complexes, which demonstrates the role of polyphosphazene macromolecules as vaccine delivery vehicles. Intrinsic in vitro immunostimulatory activity of polyphosphazene adjuvants, which was assessed using a mouse macrophage cell line, revealed comparable activities of both polymers and did not provide an explanation of their in vivo performance. However, PCEP complexes with E2 displayed greater stability against agglomeration and improved in vitro immunostimulatory activity compared to those of PCPP, which is in line with superior in vivo performance of PCEP. The results emphasize the importance of often neglected antigen-polyphosphazene self-assembly mechanisms in formulations, which can provide important insights on their in vivo behavior and facilitate the establishment of a structure-activity relationship for this important class of immunoadjuvants.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos de la Hepatitis C/administración & dosificación , Hepatitis C/prevención & control , Proteínas del Envoltorio Viral/administración & dosificación , Vacunas contra Hepatitis Viral/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Femenino , Hepacivirus/inmunología , Hepatitis C/inmunología , Hepatitis C/virología , Antígenos de la Hepatitis C/inmunología , Antígenos de la Hepatitis C/ultraestructura , Humanos , Inmunogenicidad Vacunal , Ratones , Modelos Animales , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/inmunología , Polímeros/administración & dosificación , Polímeros/química , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/ultraestructura , Relación Estructura-Actividad , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/aislamiento & purificación , Proteínas del Envoltorio Viral/ultraestructura , Vacunas contra Hepatitis Viral/inmunología
11.
Nanomedicine ; 33: 102359, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33476764

RESUMEN

Poly[di(carboxylatomethylphenoxy)phosphazene] (PCMP), a new member of polyphosphazene immunoadjuvant family, is synthesized. In vitro assessment of a new macromolecule revealed hydrolytic degradation profile and immunostimulatory activity comparable to its clinical stage homologue PCPP; however, PCMP was characterized by a beneficial reduced sensitivity to the ionic environment. In vivo evaluation of PCMP potency was conducted with human papillomavirus (HPV) virus-like particles (VLPs) based RG1-VLPs vaccine. In contrast with previously reported self-assembly of polyphosphazene adjuvants with proteins, which typically results in the formation of complexes with multimeric display of antigens, PCMP surface modified VLPs in a composition dependent pattern, which at a high polymer-to VLPs ratio led to stabilization of antigenic particles. Immunization experiments in mice demonstrated that PCMP adjuvanted RG1-VLPs vaccine induced potent humoral immune responses, in particular, on the level of highly desirable protective cross-neutralizing antibodies, and outperformed PCPP and Alhydrogel adjuvanted formulations.


Asunto(s)
Adyuvantes Inmunológicos/química , Materiales Biocompatibles/química , Compuestos Organofosforados/química , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/química , Polímeros/química , Vacunas de Partículas Similares a Virus/química , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Composición de Medicamentos , Liberación de Fármacos , Femenino , Humanos , Hidrogeles/química , Ratones Endogámicos BALB C , Vacunas contra Papillomavirus/farmacología , Vacunación , Vacunas de Partículas Similares a Virus/farmacología
12.
Biomacromolecules ; 19(8): 3467-3478, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29953203

RESUMEN

Novel oppositely charged polyphosphazene polyelectrolytes containing grafted poly(ethylene glycol) (PEG) chains were synthesized as modular components for the assembly of biodegradable PEGylated protein delivery vehicles. These macromolecular counterparts, which contained either carboxylic acid or tertiary amino groups, were then formulated at near physiological conditions into supramolecular assemblies of nanoscale level, below 100 nm. Nanocomplexes with electroneutral surface charge, as assessed by zeta potential measurements, were stable in aqueous solutions, which suggests their compact polyelectrolyte complex "core"-hydrophilic PEG "shell" structure. Investigation of PEGylated polyphosphazene nanocomplexes as agents for noncovalent PEGylation of the therapeutic protein l-asparaginase (L-ASP) in vitro demonstrated their ability to dramatically reduce protein antigenicity, as measured by antibody binding using enzyme linked immunosorbent assay (ELISA). Encapsulation in nanocomplexes did not affect enzymatic activity of L-ASP, but improved its thermal stability and proteolytic resistance. Gel permeation chromatography (GPC) experiments revealed that all synthesized polyphosphazenes exhibited composition controlled hydrolytic degradability in aqueous solutions at neutral pH and showed greater stability at lower temperatures. Overall, novel hydrolytically degradable polyphosphazene polyelectrolytes capable of spontaneous self-assembly into PEGylated nanoparticulates in aqueous solutions can potentially enable a simple and effective approach to modifying therapeutic proteins without the need for their covalent modification.


Asunto(s)
Antineoplásicos/administración & dosificación , Asparaginasa/administración & dosificación , Nanopartículas/química , Compuestos Organofosforados/química , Polielectrolitos/química , Polietilenglicoles/química , Polímeros/química , Hidrólisis
13.
Mol Pharm ; 14(7): 2285-2293, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28544850

RESUMEN

PCPP, a well-defined polyphosphazene macromolecule, has been studied as an immunoadjuvant for a soluble form of the postfusion glycoprotein of respiratory syncytial virus (RSV sF), which is an attractive vaccine candidate for inducing RSV-specific immunity in mice and humans. We demonstrate that RSV sF-PCPP formulations induce high neutralization titers to RSV comparable to alum formulations even at a low PCPP dose and protect animals against viral challenge both in the lung and in the upper respiratory tract. PCPP formulations were also characterized by Th1-biased responses, compared to Th2-biased responses that are more typical for RSV sF alone or RSV sF-alum formulations, suggesting an inherent immunostimulating activity of the polyphosphazene adjuvant. We defined these immunologically active RSV sF-PCPP formulations as self-assembled water-soluble protein-polymer complexes with distinct physicochemical parameters. The secondary structure and antigenicity of the protein in the complex were fully preserved during the spontaneous aqueous self-assembly process. These findings further advance the concept of polyphosphazene immunoadjuvants as unique dual-functionality adjuvants integrating delivery and immunostimulating modalities in one water-soluble molecule.


Asunto(s)
Compuestos Organofosforados/química , Polímeros/química , Virus Sincitiales Respiratorios/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Células CHO , Dicroismo Circular , Cricetulus , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunidad Celular/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Virus Sincitiales Respiratorios/metabolismo , Vacunas Virales/química , Vacunas Virales/inmunología
14.
Biomacromolecules ; 18(6): 2000-2011, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28525259

RESUMEN

A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing a polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to an inorganic phosphorus-nitrogen backbone, were characterized by a suite of physicochemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition-dependent hydrolytic degradability in aqueous solutions at neutral pH. Their formulations were stable at lower temperatures, potentially indicating adequate shelf life, but were characterized by accelerated degradation kinetics at elevated temperatures, including 37 °C. It was found that synthesized polyphosphazenes are capable of environmentally triggered self-assembly to produce nanoparticles with narrow polydispersity in the size range of 150-700 nm. Protein loading capacity of copolymers has been validated via their ability to noncovalently bind avidin without altering biological functionality. Acid-induced membrane-disruptive activity of polyphosphazenes has been established with an onset corresponding to the endosomal pH range and being dependent on polymer composition. The synthesized polyphosphazenes facilitated cell-surface interactions followed by time-dependent, vesicular-mediated, and saturable internalization of a model protein cargo into cancer cells, demonstrating the potential for intracellular delivery.


Asunto(s)
Ácidos Carboxílicos/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Pirrolidinonas/química , Animales , Avidina/metabolismo , Transporte Biológico , Línea Celular Tumoral , Composición de Medicamentos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Nanopartículas/ultraestructura , Compuestos Organofosforados/síntesis química , Compuestos Organofosforados/farmacología , Tamaño de la Partícula , Polímeros/síntesis química , Polímeros/farmacología , Porcinos
15.
Biomacromolecules ; 17(11): 3732-3742, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27748602

RESUMEN

Two macromolecular immunoadjuvants, poly[di(carboxylatophenoxy)phosphazene], PCPP, and poly[di(carboxylatoethylphenoxy)phosphazene], PCEP, have been investigated for their molecular interactions with model and biopharmaceutically important proteins in solutions, as well as for their TLR stimulatory effects and pH-dependent membrane disruptive activity in cellular assays. Solution interactions between polyphosphazenes and proteins, including antigens and soluble immune receptor proteins, have been studied using Asymmetric Flow Field Flow Fractionation (AF4) and Dynamic Light Scattering (DLS) at near physiological conditions: phosphate buffered saline, pH 7.4. Polyphosphazenes demonstrated selectivity in their molecular interactions with various proteins, but displayed strong binding with all vaccine antigens tested in the present study. It was found that both PCPP and PCEP showed strong avidity to soluble immune receptor proteins, such as Mannose Receptor (MR) and certain Toll-Like Receptor (TLR) proteins. Studies on TLR stimulation in vitro using HEK293 cells with overexpressed human TLRs revealed activation of TLR7, TLR8, and TLR9 signaling pathways, albeit with some nonspecific stimulation, for PCPP and the same pathways plus TLR3 for PCEP. Finally, PCEP, but not PCPP, demonstrated pH-dependent membrane disruptive activity in the pH range corresponding to the pH environment of early endosomes, which may play a role in a cross-presentation of antigenic proteins.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Compuestos Organofosforados/farmacología , Fenilpropionatos/farmacología , Polímeros/farmacología , Adyuvantes Inmunológicos/química , Presentación de Antígeno/efectos de los fármacos , Endosomas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Compuestos Organofosforados/química , Compuestos Organofosforados/inmunología , Fenilpropionatos/química , Polímeros/química , Receptores Toll-Like/biosíntesis
16.
Artículo en Inglés | MEDLINE | ID: mdl-38817739

RESUMEN

Polyorganophosphazenes are water-soluble macromolecules with immunoadjuvant activity that self-assemble with proteins to enable biological functionality. Direct imaging by cryogenic electron microscopy uncovers the coil structure of those highly charged macromolecules. The successful visualization of individual polymer chains within the vitrified state is achieved in the absence of additives for contrast enhancement and is attributed to the high mass contrast of the inorganic backbone. Upon assembly with proteins, multiple protein copies bind at the single polymer chain level resulting in structures reminiscent of compact spherical complexes or stiffened coils. The outcome depends on protein characteristics and cannot be deduced by commonly used characterization techniques, such as light scattering, thus revealing direct morphological insights crucial for understanding biological activity. Atomic force microscopy supports the morphology outcomes while advanced analytical techniques confirm protein-polymer binding. The chain visualization methodology provides tools for gaining insights into the processes of supramolecular assembly and mechanistic aspects of polymer enabled vaccine delivery.

17.
J Funct Biomater ; 15(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38391879

RESUMEN

Degradable layer-by-layer (LbL) polymeric coatings have distinct advantages over traditional biomedical coatings due to their precision of assembly, versatile inclusion of bioactive molecules, and conformality to the complex architectures of implantable devices. However, controlling the degradation rate while achieving biocompatibility has remained a challenge. This work employs polyphosphazenes as promising candidates for film assembly due to their inherent biocompatibility, tunability of chemical composition, and the buffering capability of degradation products. The degradation of pyrrolidone-functionalized polyphosphazenes was monitored in solution, complexes and LbL coatings (with tannic acid), providing the first to our knowledge comparison of solution-state degradation to solid-state LbL degradation. In all cases, the rate of degradation accelerated in acidic conditions. Importantly, the tunability of the degradation rate of polyphosphazene-based LbL films was achieved by varying film assembly conditions. Specifically, by slightly increasing the ionization of tannic acid (near neutral pH), we introduce electrostatic "defects" to the hydrogen-bonded pairs that accelerate film degradation. Finally, we show that replacing the pyrrolidone side group with a carboxylic acid moiety greatly reduces the degradation rate of the LbL coatings. In practical applications, these coatings have the versatility to serve as biocompatible platforms for various biomedical applications and controlled release systems.

18.
ACS Appl Bio Mater ; 7(6): 4133-4141, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38812435

RESUMEN

The ultimate vaccine against infections caused by Nipah virus should be capable of providing protection at the respiratory tract─the most probable port of entry for this pathogen. Intranasally delivered vaccines, which target nasal-associated lymphoid tissue and induce both systemic and mucosal immunity, are attractive candidates for enabling effective vaccination against this lethal disease. Herein, the water-soluble polyphosphazene delivery vehicle assembles into nanoscale supramolecular constructs with the soluble extracellular portion of the Hendra virus attachment glycoprotein─a promising subunit vaccine antigen against both Nipah and Hendra viruses. These supramolecular constructs signal through Toll-like receptor 7/8 and promote binding interactions with mucin─an important feature of effective mucosal adjuvants. High mass contrast of phosphorus-nitrogen backbone of the polymer enables a successful visualization of nanoconstructs in their vitrified state by cryogenic electron microscopy. Here, we characterize the self-assembly of polyphosphazene macromolecule with biologically relevant ligands by asymmetric flow field flow fractionation, dynamic light scattering, fluorescence spectrophotometry, and turbidimetric titration methods. Furthermore, a polyphosphazene-enabled intranasal Nipah vaccine candidate demonstrates the ability to induce immune responses in hamsters and shows superiority in inducing total IgG and neutralizing antibodies when benchmarked against the respective clinical stage alum adjuvanted vaccine. The results highlight the potential of polyphosphazene-enabled nanoassemblies in the development of intranasal vaccines.


Asunto(s)
Administración Intranasal , Virus Nipah , Compuestos Organofosforados , Polímeros , Vacunas de Subunidad , Vacunas Virales , Compuestos Organofosforados/química , Compuestos Organofosforados/administración & dosificación , Polímeros/química , Virus Nipah/inmunología , Animales , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/administración & dosificación , Tamaño de la Partícula , Ensayo de Materiales , Materiales Biocompatibles/química , Nanopartículas/química , Inmunización
19.
Adv Healthc Mater ; 13(8): e2303018, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38117252

RESUMEN

Silver sulfide nanoparticles (Ag2S-NP) hold promise for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA), and photothermal therapy (PTT). However, their NIR absorbance is relatively low, and previous formulations are synthesized using toxic precursors under harsh conditions and are not effectively cleared due to their large size. Herein, sub-5 nm Ag2S-NP are synthesized and encapsulated in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses are conducted using biocompatible, aqueous reagents under ambient conditions. The encapsulation of Ag2S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and PTT effects. AgPCPP nanoparticles exhibit potent contrast properties suitable for PA and NIRF imaging, as well as for computed tomography (CT). Furthermore, AgPCPP nanoparticles readily improve the conspicuity of breast tumors in vivo. Under NIR laser irradiation, AgPCPP nanoparticles significantly reduce breast tumor growth, leading to prolonged survival compared to free Ag2S-NP. Over time, AgPCPP retention in tissues gradually decreases, without any signs of acute toxicity, providing strong evidence of their safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion after fulfilling diagnostic and therapeutic tasks, offering good prospects for clinical translation.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/terapia , Fototerapia/métodos , Línea Celular Tumoral , Nanomedicina Teranóstica/métodos , Polímeros
20.
Artículo en Inglés | MEDLINE | ID: mdl-37138514

RESUMEN

Clinical applications of protein therapeutics-an advanced generation of drugs characterized by high biological specificity-are rapidly expanding. However, their development is often impeded by unfavorable pharmacokinetic profiles and largely relies on the use of drug delivery systems to prolong their in vivo half-life and suppress undesirable immunogenicity. Although a commercially established PEGylation technology based on protein conjugation with poly(ethylene glycol) (PEG)-protective steric shield resolves some of the challenges, the search for alternatives continues. Noncovalent PEGylation, which mainly relies on multivalent (cooperative) interactions and high affinity (host-guest) complexes formed between protein and PEG offers a number of potential advantages. Among them are dynamic or reversible protection of the protein with minimal loss of biological activity, drastically lower manufacturing costs, "mix-and-match" formulations approaches, and expanded scope of PEGylation targets. While a great number of innovative chemical approaches have been proposed in recent years, the ability to effectively control the stability of noncovalently assembled protein-PEG complexes under physiological conditions presents a serious challenge for the commercial development of the technology. In an attempt to identify critical factors affecting pharmacological behavior of noncovalently linked complexes, this Review follows a hierarchical analysis of various experimental techniques and resulting supramolecular architectures. The importance of in vivo administration routes, degradation patterns of PEGylating agents, and a multitude of potential exchange reactions with constituents of physiological compartments are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Asunto(s)
Péptidos , Proteínas , Proteínas/uso terapéutico , Proteínas/química , Péptidos/química , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Composición de Medicamentos , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA