Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Fetal Diagn Ther ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471477

RESUMEN

INTRODUCTION: Open spina bifida (OSB) manifests as myelomeningocele (MMC) or myeloschisis (MS). Both lesions theoretically leak cerebrospinal fluid (CSF) and produce different degrees of Chiari II malformation (CHMII). However, it is not entirely clear whether these forms of OSB have different clinical manifestations. This study aimed to evaluate the clinical and/or radiological differences between myeloschisis and myelomeningocele in patients who underwent prenatal OSB repair. METHODS: A total of 71 prenatal repairs were performed with the open technique at the Public Hospital of Rancagua, Chile, between 2012 and 2022. We performed follow-up MRI imaging of fetuses that qualified for prenatal OSB repair surgery. We examined the correlations between various anthropomorphic measurements and clinical and imaging variables, such as the type of lesion and dimensions such as ventricle atrium diameter, degree of severity of CHMII, need for CSF shunt at 12 months, and walking at 30 months. RESULTS: This study included 71 fetuses with OSB for which 38 MRI examinations were analyzed; 61% (43/71) of lesions were MMC and 39% (28/71) were MS. Grade 3 (severe) CHMII were found in 80% (12/15) of MS and 43% (10/23) of MMC (p<0.05). Fetuses with an atrial diameter less than 13.48 mm had a lower probability of requiring a CSF shunt at 12 months (p<0.05). MMC was associated with a higher frequency of clubfoot at birth (p<0.05), whereas MS was significantly associated with more severe CHMII (p<0.05). Although the correlations were not significant, we observed clear trends that more children with MS required shunts at 12 months and could walk at 30 months compared to children with MMC. CONCLUSIONS: MS and MMC are distinct subtypes of OSB. Further studies of larger cohorts that include biomolecular and histological analysis are required to better understand differences between these lesions. This study may enable healthcare providers to better advise parents and prepare healthcare teams earlier for the management of patients undergoing prenatal repair of OSB.

2.
Mol Biol Rep ; 46(5): 5197-5207, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31309451

RESUMEN

Cardiac myofibroblast (CMF) are non-muscle cardiac cells that play a crucial role in wound healing and in pathological remodeling. These cells are mainly derived of cardiac fibroblast (CF) differentiation mediated by TGF-ß1. Evidence suggests that bradykinin (BK) regulates cardiac fibroblast function in the heart. Both B1 and B2 kinin receptors (B1R and B2R, respectively) mediate the biological effects of kinins. We recently showed that both receptors are expressed in CMF and its stimulation decreases collagen secretion. Whether TGF-ß1 regulates B1R and B2R expression, and how these receptors control antifibrotic activity in CMF remains poorly understood. In this work, we sought to study, the regulation of B1R expression in cultured CMF mediated by TGF-ß1, and the molecular mechanisms involved in B1R activation on CMF intracellular collagen type-I levels. Cardiac fibroblast-primary culture was obtained from neonatal rats. Hearts were digested and CFs were attached to dishes and separated from cardiomyoctes. CMF were obtained from CF differentiation with TGF-ß1 5 ng/mL. CF and CMF were treated with B1R and B2R agonists and with TGF-ß1 at different times and concentrations, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in B1R expression, collagen type-I and prostacyclin levels. B1R and collagen type-I levels were evaluated by western blot. Prostacyclin levels were quantified by an ELISA kit. TGF-ß1 increased B1R expression via TGFß type I receptor kinase (ALK5) activation and its subsequent signaling pathways involving Smad2, p38, JNK and ERK1/2 activation. Moreover, in CMF, the activation of B1R and B2R by their respective agonists, reduced collagen synthesis. This effect was mediated by the canonical signaling pathway; phospholipase C (PLC), protein kinase C (PKC), phospholipase A2 (PLA2), COX-2 activation and PGI2 secretion and its autocrine effect. TGF-ß1 through ALK5, Smad2, p38, JNK and ERK1/2 increases B1R expression; whereas in CMF, B1R and B2R activation share common signaling pathways for reducing collagen synthesis.


Asunto(s)
Miocardio/citología , Miofibroblastos/citología , Receptor de Bradiquinina B1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba , Animales , Animales Recién Nacidos , Diferenciación Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Epoprostenol/metabolismo , Regulación de la Expresión Génica , Miofibroblastos/metabolismo , Ratas , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 831-842, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29222072

RESUMEN

Cardiac fibroblasts (CF) act as sentinel cells responding to chemokines, cytokines and growth factors released in cardiac tissue in cardiac injury events, such as myocardial infarction (MI). Cardiac injury involves the release of various damage-associated molecular patterns (DAMPs) including heparan sulfate (HS), a constituent of the extracellular matrix (ECM), through the TLR4 receptor activation triggering a strong inflammatory response, inducing leukocytes recruitment. This latter cells are responsible of clearing cell debris and releasing cytokines that promote CF differentiation to myofibroblast (CMF), thus initiating scar formation. CF were isolated from adult male rats and subsequently stimulated with HS or LPS, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in ICAM-1 and VCAM-1 expression. siRNA against ICAM-1 and VCAM-1 were used to evaluate participation of these adhesion molecules on leukocytes recruitment. HS through TLR4, PI3K/AKT and NF-ΚB increased ICAM-1 and VCAM-1 expression, which favored the adhesion of spleen mononuclear cells (SMC) and bone marrow granulocytes (PMN) to CF. These effects were prevented by siRNA against ICAM-1 and VCAM-1. Co-culture of CF with SMC increased α-SMA expression, skewing CF towards a pro-fibrotic phenotype, while CF pretreatment with HS partially reverted this effect. CONCLUSION: These data show the dual role of HS during the initial stages of wound healing. Initially, HS enhance the pro-inflammatory role of CF increasing cytokines secretion; and later, by increasing protein adhesion molecules allows the adhesion of SMC on CF, which trigger CF-to-CMF differentiation.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Heparitina Sulfato/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/efectos de los fármacos , Miocardio/citología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Células Cultivadas , Fibroblastos/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/genética , Leucocitos/fisiología , Masculino , Miocardio/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Molécula 1 de Adhesión Celular Vascular/genética
4.
Toxicol Appl Pharmacol ; 351: 46-56, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29775649

RESUMEN

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.


Asunto(s)
Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Bradiquinina B1/biosíntesis , Receptor Toll-Like 4/biosíntesis , Animales , Células Cultivadas , Fibroblastos/efectos de los fármacos , Expresión Génica , Humanos , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Bradiquinina B1/agonistas , Receptor de Bradiquinina B1/genética , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética
5.
J Mol Cell Cardiol ; 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27983968

RESUMEN

Macrophage polarization plays an essential role in cardiac remodeling after injury, evolving from an initial accumulation of proinflammatory M1 macrophages to a greater balance of anti-inflammatory M2 macrophages. Whether cardiac fibroblasts themselves influence this process remains an intriguing question. In this work, we present evidence for a role of cardiac fibroblasts (CF) as regulators of macrophage recruitment and skewing. Adult rat CF, were treated with lipopolysaccharide (LPS) or TGF-ß1, to evaluate ICAM-1 and VCAM-1 expression using Western blot and proinflammatory/profibrotic cytokine secretion using LUMINEX. We performed in vitro migration and adhesion assays of rat spleen monocytes to layers of TGF-ß1- or LPS-pretreated CF. Finally, TGF-ß1- or LPS-pretreated CF were co-cultured with monocyte, to evaluate their effects on macrophage polarization, using flow cytometry and cytokine secretion. There was a significant increase in monocyte adhesion to LPS- or TGF-ß1-stimulated CF, associated with increased CF expression of ICAM-1 and VCAM-1. siRNA silencing of either ICAM-1 or VCAM-1 inhibited monocyte adhesion to LPS-pretreated CF; however, monocyte adhesion to TGF-ß1-treated CF was dependent on only VCAM-1 expression. Pretreatment of CF with LPS or TGF-ß1 increased monocyte migration to CF, and this effect was completely abolished with an MCP-1 antibody blockade. LPS-treated CF secreted elevated levels of TNF-α and MCP-1, and when co-cultured with monocyte, LPS-treated CF stimulated increased macrophage M1 polarization and secretion of proinflammatory cytokines (TNF-α, IL-12 and MCP-1). On the other hand, CF stimulated with TGF-ß1 produced an anti-inflammatory cytokine profile (high IL-10 and IL-5, low TNF-α). When co-cultured with monocytes, the TGF-ß1 stimulated fibroblasts skewed monocyte differentiation towards M2 macrophages accompanied by increased IL-10 and decreased IL-12 levels. Taken together, our results show for the first time that CF can recruit monocytes (via MCP-1-mediated chemotaxis and adhesion to ICAM-1/VCAM-1) and induce their differentiation to M1 or M2 macrophages (through the CF cytokine profile induced by proinflammatory or profibrotic stimuli).

6.
Cell Signal ; 109: 110778, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37343898

RESUMEN

Cardiac fibroblasts (CFs) activation is a common response to most pathological conditions affecting the heart, characterized by increased cellular secretory capacity and increased expression of fibrotic markers, such as collagen I and smooth muscle actin type alpha (α-SMA). Fibrotic activation of CFs induces the increase in tissue protein content, with the consequent tissue stiffness, diastolic dysfunction, and heart failure. Therefore, the search for new mechanisms of CFs activation is important to find novel treatments for cardiac diseases characterized by fibrosis. In this regard, TGF-ß1, a cytokine with proinflammatory and fibrotic properties, is crucial in the CFs activation and the development of fibrotic diseases, whereas its molecular targets are not completely known. Serum and glucocorticoid-regulated kinase (SGK1) is a protein involved in various pathophysiological phenomena, especially cardiac and renal diseases that curse with fibrosis. Additionally, SGK1 phosphorylates and regulates the activity and expression of several targets, highlighting FoxO3a for its role in the regulation of oxidative stress and CFs activation induced by TGF-ß1. However, the regulation of SGK1 by TGF-ß1 and its role in CFs activation have not been studied. In this work, we evaluate the role of SGK1 in CFs isolated from neonatal Sprague-Dawley rats. The participation of SGK1 in the fibrotic activation of CFs induced by TGF-ß1 was analyzed, using an inhibitor or siRNA of SGK1. In addition, the role of SGK1 on the regulation of FoxO3a and oxidative stress induced by TGF-ß1 was analyzed. Our results indicate that TGF-ß1 increased both the activity and expression of SGK1 in CFs, requiring the activation of MAPKs, ERK1/2, p38 and JNK, while inhibition and silencing of SGK1 prevented TGF-ß1-induced fibrotic activation of CFs. In addition, SGK1 inhibition prevented FoxO3a inactivation and expression reduction, catalase and SOD2 expression decrease, and the increase of oxidative stress induced by TGF-ß1. Taken together, our results position SGK1 as an important regulator of CFs activation driven by TGF-ß1, at least in part, through the regulation of FoxO3a and oxidative stress.


Asunto(s)
Miocardio , Factor de Crecimiento Transformador beta1 , Ratas , Animales , Ratas Sprague-Dawley , Miocardio/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Estrés Oxidativo , Fibroblastos/metabolismo , Fibrosis
7.
Front Cell Dev Biol ; 11: 1122408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799272

RESUMEN

Introduction: Cardiac fibroblasts (CF) are crucial cells in damaged heart tissues, expressing TLR4, IFN-receptor and responding to lipopolysaccharide (LPS) and interferon-ß (IFN-ß) respectively. While CF interact with immune cells; however, their relationship with neutrophils remains understudied. Additionally, theimpact of LPS and IFN-ß on CF-neutrophil interaction is poorly understood. Methods: Isolated CF from adult rats were treated with LPS, with or without IFN-ß. This study examined IL-8 secretion, ICAM-1 and VCAM-1 expression, and neutrophil recruitment, as well as their effects on MMPs activity. Results: LPS triggered increased IL-8 expression and secretion, along with elevated ICAM-1 and VCAM-1 expression, all of which were blocked by TAK-242. Pre-treatment with IFN-ß countered these LPS effects. LPS treated CF showed higher neutrophil recruitment (migration and adhesion) compared to unstimulated CF, an effect prevented by IFN-ß. Ruxolitinib blocked these IFN-ß anti-inflammatory effects, implicating JAK signaling. Analysis of culture medium zymograms from CF alone, and CF-neutrophils interaction, revealed that MMP2 was mainly originated from CF, while MMP9 could come from neutrophils. LPS and IFN-ß boosted MMP2 secretion by CF. MMP9 activity in CF was low, and LPS or IFN-ß had no significant impact. Pre-treating CF with LPS, IFN-ß, or both before co-culture with neutrophils increased MMP2. Neutrophil co-culture increased MMP9 activity, with IFN-ß pre-treatment reducing MMP9 compared to unstimulated CF. Conclusion: In CF, LPS induces the secretion of IL-8 favoring neutrophils recruitment and these effects were blocked by IFN-. The results highlight that CF-neutrophil interaction appears to influence the extracellular matrix through MMPs activity modulation.

8.
Cell Signal ; 106: 110657, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933776

RESUMEN

Cardiac cells respond to various pathophysiological stimuli, synthesizing inflammatory molecules that allow tissue repair and proper functioning of the heart; however, perpetuation of the inflammatory response can lead to cardiac fibrosis and heart dysfunction. High concentration of glucose (HG) induces an inflammatory and fibrotic response in the heart. Cardiac fibroblasts (CFs) are resident cells of the heart that respond to deleterious stimuli, increasing the synthesis and secretion of both fibrotic and proinflammatory molecules. The molecular mechanisms that regulate inflammation in CFs are unknown, thus, it is important to find new targets that allow improving treatments for HG-induced cardiac dysfunction. NFκB is the master regulator of inflammation, while FoxO1 is a new participant in the inflammatory response, including inflammation induced by HG; however, its role in the inflammatory response of CFs is unknown. The inflammation resolution is essential for an effective tissue repair and recovery of the organ function. Lipoxin A4 (LXA4) is an anti-inflammatory agent with cytoprotective effects, while its cardioprotective effects have not been fully studied. Thus, in this study, we analyze the role of p65/NFκB, and FoxO1 in CFs inflammation induced by HG, evaluating the anti-inflammatory properties of LXA4. Our results demonstrated that HG induces the inflammatory response in CFs, using an in vitro and ex vivo model, while FoxO1 inhibition and silencing prevented HG effects. Additionally, LXA4 inhibited the activation of FoxO1 and p65/NFκB, and inflammation of CFs induced by HG. Therefore, our results suggest that FoxO1 and LXA4 could be novel drug targets for the treatment of HG-induced inflammatory and fibrotic disorders in the heart.


Asunto(s)
Lipoxinas , Humanos , Lipoxinas/farmacología , FN-kappa B , Inflamación/tratamiento farmacológico , Fibrosis , Glucosa/toxicidad , Fibroblastos , Proteína Forkhead Box O1
9.
Front Immunol ; 13: 1035589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713380

RESUMEN

Introduction: Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1ß, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods: PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results: In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion: These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.


Asunto(s)
Cardiomiopatías , Enfermedad de Chagas , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Trypanosoma cruzi , Humanos , Animales , Ratones , Trypanosoma cruzi/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Quinasas Asociadas a rho/metabolismo , FN-kappa B/metabolismo , Atorvastatina/farmacología , Células U937 , Macrófagos/metabolismo , Enfermedad de Chagas/genética , Citocinas/metabolismo , Cardiomiopatías/metabolismo , Inflamación/metabolismo
10.
Cell Signal ; 83: 109978, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33722671

RESUMEN

In the normal heart, cardiac fibroblasts (CFs) maintain extracellular matrix (ECM) homeostasis, whereas in pathological conditions, such as diabetes mellitus (DM), CFs converse into cardiac myofibroblasts (CMFs) and this CFs phenoconversion increase the synthesis and secretion of ECM proteins, promoting cardiac fibrosis and heart dysfunction. High glucose (HG) conditions increase TGF-ß1 expression and FoxO1 activity, whereas FoxO1 is crucial to CFs phenoconversion induced by TGF-ß1. In addition, FoxO1 increases CTGF expression, whereas CTGF plays an active role in the fibrotic process induced by hyperglycemia. However, the role of FoxO1 and CTGF in CFs phenoconversion induced by HG is not clear. In this study, we investigated the effects of FoxO1 pharmacological inhibition on CFs phenoconversion in both in vitro and ex vivo models of DM. Our results demonstrate that HG induces CFs phenoconversion and FoxO1 activation. Moreover, AS1842856, a pharmacological inhibitor of FoxO1 activity, prevents CFs phenoconversion and CTGF expression increase induced by HG, whereas these results were corroborated by FoxO1 silencing. Additionally, K252a, a pharmacological blocker of CTGF receptor, prevents HG-induced CFs phenoconversion, which was corroborated with CTGF expression knockdown. Furthermore, through CFs isolation from heart of diabetic rats, we showed that hyperglycemia induces FoxO1 activation, the increase of CTGF expression and CFs phenoconversion, whereas the FoxO1 activity inhibition reverses the effects induced by hyperglycemia on CFs. Altogether, our results demonstrate that FoxO1 and CTGF are necessary for CFs phenoconversion induced by HG and suggest that both proteins are likely to become a potential targeted drug for fibrotic response induced by hyperglycemic conditions.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Glucosa/farmacología , Miocardio/metabolismo , Miofibroblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Diferenciación Celular/genética , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley
11.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118695, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169420

RESUMEN

Cardiac fibroblasts (CFs) are necessary to maintain extracellular matrix (ECM) homeostasis in the heart. Normally, CFs are quiescent and secrete small amounts of ECM components, whereas, in pathological conditions, they differentiate into more active cells called cardiac myofibroblasts (CMF). CMF conversion is characteristic of cardiac fibrotic diseases, such as heart failure and diabetic cardiomyopathy. TGF-ß1 is a key protein involved in CMF conversion. SMADs are nuclear factor proteins activated by TGF-ß1 that need other proteins, such as forkhead box type O (FoxO) family members, to promote CMF conversion. FoxO1, a member of this family protein, is necessary for TGF-ß1-induced CMF conversion, whereas the role of FoxO3a, another FoxO family member, is unknown. FoxO3a plays an important role in many fibrotic processes in the kidney and lung. However, the participation of FoxO3a in the conversion of CFs into CMF is not clear. In this paper, we demonstrate that TGF-ß1 decreases the activation and expression of FoxO3a in CFs. FoxO3a regulation by TGF-ß1 requires activated SMAD3, ERK1/2 and Akt. Furthermore, we show that FoxO1 is crucial in the FoxO3a regulation induced by TGF-ß1, as shown by overexpressed FoxO1 enhancing and silenced FoxO1 suppressing the effects of TGF-ß1 on FoxO3a. Finally, the regulation of TGF-ß1-induced CMF conversion was enhanced by FoxO3a silencing and suppressed by inhibited FoxO3a degradation. Considering these collective findings, we suggest that FoxO3a acts as a negative regulator of the CMF conversion that is induced by TGF-ß1.


Asunto(s)
Proteína Forkhead Box O3/genética , Miocardio/metabolismo , Proteína smad3/genética , Factor de Crecimiento Transformador beta1/genética , Animales , Diferenciación Celular/genética , Matriz Extracelular/genética , Proteína Forkhead Box O3/antagonistas & inhibidores , Silenciador del Gen , Homeostasis/genética , Humanos , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Cultivo Primario de Células , Ratas
12.
Front Pharmacol ; 9: 1368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555324

RESUMEN

Cardiac fibroblasts (CFs) contribute to theinflammatory response to tissue damage, secreting both pro- and anti-inflammatory cytokines and chemokines. Interferon beta (IFN-ß) induces the phosphorylation of signal transducer and activator of transcription (STAT) proteins through the activation of its own receptor, modulating the secretion of cytokines and chemokines which regulate inflammation. However, the role of IFN-ß and STAT proteins in modulating the inflammatory response of CF remains unknown. CF were isolated from adult male rats and subsequently stimulated with IFN-ß to evaluate the participation of STAT proteins in secreting chemokines, cytokines, cell adhesion proteins expression and in their capacity to recruit neutrophils. In addition, in CF in which the TRL4 receptor was pre-activated, the effect of INF-ß on the aforementioned responses was also evaluated. Cardiac fibroblasts stimulation with IFN-ß showed an increase in STAT1, STAT2, and STAT3 phosphorylation. IFN-ß stimulation through STAT1 activation increased proinflammatory chemokines MCP-1 and IP-10 secretion, whereas IFN-ß induced activation of STAT3 increased cytokine secretion of anti-inflammatory IL-10. Moreover, in TLR4-activated CF, IFN-ß through STAT2 and/or STAT3, produced an anti-inflammatory effect, reducing pro-IL-1ß, TNF-α, IL-6, MCP-1, and IP-10 secretion; and decreasing neutrophil recruitment by decreasing ICAM-1 and VCAM-1 expression. Altogether, our results indicate that IFN-ß exerts both pro-inflammatory and anti-inflammatory effects in non-stimulated CF, through differential activation of STAT proteins. When CF were previously treated with an inflammatory agent such as TLR-4 activation, IFN-ß effects were predominantly anti-inflammatory.

13.
Cardiovasc Toxicol ; 17(4): 458-470, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28220374

RESUMEN

Bacterial lipopolysaccharide (LPS) is a known ligand of Toll-like receptor 4 (TLR4) which is expressed in cardiac fibroblasts (CF). Differentiation of CF to cardiac myofibroblasts (CMF) is induced by transforming growth factor-ß1 (TGF-ß1), increasing alpha-smooth muscle actin (α-SMA) expression. In endothelial cells, an antagonist effect between LPS-induced signaling and canonical TGF-ß1 signaling was described; however, it has not been studied whether in CF and CMF the expression of α-SMA induced by TGF-ß1 is antagonized by LPS and the mechanism involved. In adult rat CF and CMF, α-SMA, ERK1/2, Akt, NF-κß, Smad3, and Smad7 protein levels were determined by western blot, TGF-ß isoforms by ELISA, and α-SMA stress fibers by immunocytochemistry. CF and CMF secrete the three TGF-ß isoforms, and the secretion levels of TGF-ß2 was affected by LPS treatment. In CF, LPS treatment decreased the protein levels of α-SMA, and this effect was prevented by TAK-242 (TLR4 inhibitor) and LY294002 (Akt inhibitor), but not by BAY 11-7082 (NF-κß inhibitor) and PD98059 (ERK1/2 inhibitor). TGF-ß1 increased α-SMA protein levels in CF, and LPS prevented partially this effect. In addition, in CMF α-SMA protein levels were decreased by LPS treatment, which was abolished by TAK-242. Finally, in CF LPS decreased the p-Smad3 phosphorylation and increased the Smad7 protein levels. LPS treatment prevents the CF-to-CMF differentiation and reverses the CMF phenotype induced by TGF-ß1, through decreasing p-Smad3 and increasing Smad7 protein levels.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Lipopolisacáridos/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Masculino , Miocitos Cardíacos/fisiología , Miofibroblastos/fisiología , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 4/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA