Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biochem Soc Trans ; 43(4): 579-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26551696

RESUMEN

The 18-kDa mitochondrial translocator protein (TSPO) is known to be highly expressed in several types of cancer, including gliomas, whereas expression in normal brain is low. TSPO functions in glioma are still incompletely understood. The TSPO can be quantified pre-operatively with molecular imaging making it an ideal candidate for personalized treatment of patient with glioma. Studies have proposed to exploit the TSPO as a transporter of chemotherapics to selectively target tumour cells in the brain. Our studies proved that positron emission tomography (PET)-imaging can contribute to predict progression of patients with glioma and that molecular imaging with TSPO-specific ligands is suitable to stratify patients in view of TSPO-targeted treatment. Finally, we proved that TSPO in gliomas is predominantly expressed by tumour cells.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Receptores de GABA/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Humanos , Terapia Molecular Dirigida , Tomografía de Emisión de Positrones , Medicina de Precisión , Pronóstico , Regulación hacia Arriba
2.
Methods Mol Biol ; 2764: 291-310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393602

RESUMEN

Aberrant cell cycle progression is a hallmark of solid tumors. Therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. In this chapter, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique, combined with mathematical modeling, allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Ciclo Celular , División Celular , Diagnóstico por Imagen , Técnicas de Cultivo Tridimensional de Células , Esferoides Celulares/metabolismo
3.
Methods Mol Biol ; 1612: 401-416, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28634959

RESUMEN

Aberrant cell cycle progression is a hallmark of solid tumors; therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. Here, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.


Asunto(s)
Ciclo Celular , Imagenología Tridimensional/métodos , Melanoma/patología , Modelos Biológicos , Línea Celular Tumoral , Fluorescencia , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Esferoides Celulares/citología , Esferoides Celulares/patología , Ubiquitinación
4.
J Vis Exp ; (106): e53486, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26779761

RESUMEN

Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.


Asunto(s)
Citometría de Flujo/métodos , Melanoma/patología , Microscopía Confocal/métodos , Ciclo Celular/fisiología , División Celular/fisiología , Hipoxia de la Célula/fisiología , Supervivencia Celular/fisiología , Fase G1/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Melanoma/metabolismo , Esferoides Celulares/patología , Células Tumorales Cultivadas , Microambiente Tumoral/efectos de los fármacos , Ubiquitinación
5.
Pigment Cell Melanoma Res ; 27(5): 764-76, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24902993

RESUMEN

Solid cancers are composed of heterogeneous zones containing proliferating and quiescent cells. Despite considerable insight into the molecular mechanisms underlying aberrant cell cycle progression, there is limited understanding of the relationship between the cell cycle on the one side, and melanoma cell motility, invasion, and drug sensitivity on the other side. Utilizing the fluorescent ubiquitination-based cell cycle indicator (FUCCI) to longitudinally monitor proliferation and migration of melanoma cells in 3D culture and in vivo, we found that invading melanoma cells cycle actively, while G1-arrested cells showed decreased invasion. Melanoma cells in a hypoxic environment or treated with mitogen-activated protein kinase pathway inhibitors remained G1-arrested for extended periods of time, with proliferation and invasion resuming after re-exposure to a more favorable environment. We challenge the idea that the invasive and proliferative capacity of melanoma cells are mutually exclusive and further demonstrate that a reversibly G1-arrested subpopulation survives in the presence of targeted therapies.


Asunto(s)
Melanoma/patología , Invasividad Neoplásica , Animales , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos , Femenino , Colorantes Fluorescentes/química , Fase G1 , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Ubiquitina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA