RESUMEN
Protein ingestion concurrently stimulates euglycemic glucagon and insulin secretion, a response that is particularly robust with rapidly absorbing proteins. Previously, we have shown that ingestion of repeated doses of rapidly absorbing whey protein equally stimulated endogenous glucose production (EGP) and glucose disposal (Rd), thus explaining the preservation of euglycemia. Here, we aimed to determine if a smaller single dose of whey could elicit a large enough glucagon and insulin response to stimulate glucose flux. Therefore, in normoglycemic young adult males (n = 10; age â¼26; BMI â¼25), using [6,6-2H2] glucose tracing and quantitative targeted metabolite profiling, we determined the metabolic response to a single 25 g "standard" dose of whey protein. Whey protein ingestion did not alter glycemia, but increased circulating glucagon (peak 4-fold basal), insulin (peak 6-fold basal), amino acids, and urea while also reducing free fatty acid (FFA) and glycerol concentrations. Interestingly, the postprandial insulin response was driven by both a stimulation of insulin secretion and marked reduction in hepatic insulin clearance. Whey protein ingestion resulted in a modest stimulation of EGP and Rd, both peaking at â¼20% above baseline 1 h after protein ingestion. These findings demonstrate that the ingestion of a single standard serving of whey protein can induce a euglycemic glucagon and insulin response that stimulates glucose flux. We speculate on a theory that could potentially explain how glucagon and insulin synergistically provide hardwired control of nitrogen and glucose homeostasis.NEW & NOTEWORTHY Protein ingestion concurrently stimulates glucagon and insulin secretion. Here we show that in normoglycemic males, ingestion of a single "standard" 25 g serving of rapidly absorbing whey protein drives a sufficiently large glucagon and insulin response, such that it simultaneously increases endogenous glucose production and glucose disposal. We speculate on a novel theory that could potentially explain how the antagonistic/synergistic actions of glucagon and insulin simultaneously provide tight control of glucose and nitrogen homeostasis.
Asunto(s)
Glucagón , Insulina , Humanos , Masculino , Adulto Joven , Insulina/metabolismo , Glucagón/metabolismo , Glucosa , Proteína de Suero de Leche/farmacología , Glucemia/metabolismo , Nitrógeno , BiologíaRESUMEN
Osteoglycin (OGN) and lipocalin-2 (LCN2) are hormones that can be secreted by bone and have been linked to glucose homeostasis in rodents. However, the endocrine role of these hormones in humans is contradictory and unclear. We examined the effects of exercise and meal ingestion on circulating serum OGN and LCN2 levels in eight healthy males {age: 28 [25, 30] years [median ± interquartile range (IQR)] and body mass index [BMI]: 24.3 [23.6, 25.5] kg/m2}. In a randomized crossover design, participants ingested a high-glucose (1.1 g glucose/kg body wt) mixed-nutrient meal (45% carbohydrate, 20% protein, and 35% fat) on a rest-control day and 3 and 24 h after aerobic cycling exercise (1 h at 70%-75% VÌo2peak). Acute aerobic exercise increased serum LCN2 levels immediately after exercise (â¼61%), which remained elevated 3-h postexercise (â¼55%). In contrast, serum OGN remained similar to baseline levels throughout the 3-h postexercise recovery period. The ingestion of a high-glucose mixed-nutrient meal led to a decrease in serum OGN at 90-min (approximately -17%) and 120-min postprandial (approximately -44%), and a decrease in LCN2 at 120-min postprandial (approximately -26%). Compared with the control meal, prior exercise elevated serum OGN and LCN2 levels at 120-min postprandial when the meal was ingested 3-h (OGN: â¼74% and LCN2: â¼68%) and 24-h postexercise (OGN: â¼56% and LCN2: â¼16%). Acute exercise increases serum LCN2 and attenuates the postprandial decrease in OGN and LCN2 following high-glucose mixed-nutrient meal ingestion. The potential endocrine role of circulating OGN and LCN2 in humans warrants further investigation.NEW & NOTEWORTHY We provide novel evidence that OGN and LCN2 decrease 120 min after ingesting a high-glucose mixed-nutrient meal in healthy adults. Acute aerobic exercise increases circulating LCN2 for up to 3-h postexercise, whereas circulating OGN remains similar to baseline. Despite differing postexercise responses, postprandial LCN2 and OGN are elevated when the high-glucose meal is ingested 3-h and 24-h postexercise. Findings support that OGN and LCN2 are dynamically linked to energy homeostasis in humans.
Asunto(s)
Ejercicio Físico , Periodo Posprandial , Adulto , Glucemia/metabolismo , Ingestión de Alimentos , Ejercicio Físico/fisiología , Glucosa , Hormonas , Humanos , Insulina/metabolismo , Lipocalina 2 , Masculino , Nutrientes , Periodo Posprandial/fisiologíaRESUMEN
AIMS/HYPOTHESIS: This study aimed to examine the metabolic health of young apparently healthy non-obese adults to better understand mechanisms of hyperinsulinaemia. METHODS: Non-obese (BMI < 30 kg/m2) adults aged 18-35 years (N = 254) underwent a stable isotope-labelled OGTT. Insulin sensitivity, glucose effectiveness and beta cell function were determined using oral minimal models. Individuals were stratified into quartiles based on their insulin response during the OGTT, with quartile 1 having the lowest and quartile 4 the highest responses. RESULTS: Thirteen per cent of individuals had impaired fasting glucose (IFG; n = 14) or impaired glucose tolerance (IGT; n = 19), allowing comparisons across the continuum of insulin responses within the spectrum of normoglycaemia and prediabetes. BMI (~24 kg/m2) was similar across insulin quartiles and in those with IFG and IGT. Despite similar glycaemic excursions, fasting insulin, triacylglycerols and cholesterol were elevated in quartile 4. Insulin sensitivity was lowest in quartile 4, and accompanied by increased insulin secretion and reduced insulin clearance. Individuals with IFG had similar insulin sensitivity and beta cell function to those in quartiles 2 and 3, but were more insulin sensitive than individuals in quartile 4. While individuals with IGT had a similar degree of insulin resistance to quartile 4, they exhibited a more severe defect in beta cell function. Plasma branched-chain amino acids were not elevated in quartile 4, IFG or IGT. CONCLUSIONS/INTERPRETATION: Hyperinsulinaemia within normoglycaemic young, non-obese adults manifests due to increased insulin secretion and reduced insulin clearance. Individual phenotypic characterisation revealed that the most hyperinsulinaemic were more similar to individuals with IGT than IFG, suggesting that hyperinsulinaemic individuals may be on the continuum toward IGT. Furthermore, plasma branched-chain amino acids may not be an effective biomarker in identifying hyperinsulinaemia and insulin resistance in young non-obese adults.
Asunto(s)
Aminoácidos/sangre , Hiperinsulinismo/metabolismo , Secreción de Insulina/fisiología , Insulina/sangre , Adolescente , Adulto , Glucemia/metabolismo , Ayuno/sangre , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Hiperinsulinismo/sangre , Resistencia a la Insulina/fisiología , Lípidos/sangre , Masculino , Adulto JovenRESUMEN
Single-meal studies have shown that carbohydrate ingestion causes rapid and persistent suppression of endogenous glucose production (EGP). However, little is known about the regulation of EGP under real-life eating patterns in which multiple carbohydrate-containing meals are consumed throughout the day. Therefore, we aimed to characterize the regulation of EGP in response to sequential meals, specifically during the breakfast-lunch transition. Nine healthy individuals (5 men, 4 women; 32 ± 2 yr; 25.0 ± 1.4 kg/m2) ingested two identical mixed meals, each containing 25 g of glucose, separated by 4 h, and EGP was determined by the variable infusion tracer-clamp approach. EGP was rapidly suppressed after both meals, with the pattern and magnitude of suppression being similar over the initial 75-min postmeal period. However, EGP suppression was more transient after breakfast compared with lunch, with EGP returning to basal rates 3 h after breakfast. In contrast, EGP remained in a suppressed state for the entire 4-h postlunch period. This occurred despite each meal eliciting similar plasma glucose and insulin responses. However, there was greater suppression of plasma glucagon levels after lunch, likely contributing to this response. These findings highlight the potential for distinct regulation of EGP with each meal of the day and suggest that EGP may be in a suppressed state for much of the day, since EGP did not return to basal rates even after a lunch meal containing a modest amount of carbohydrate.
Asunto(s)
Glucosa/metabolismo , Hígado/metabolismo , Adulto , Glucemia/metabolismo , Femenino , Glucagón/metabolismo , Humanos , Insulina/sangre , Masculino , Comidas , Periodo PosprandialRESUMEN
Background: Biomarkers of oxidation-reduction (redox) homeostasis are commonly measured in human blood to assess whether certain stimuli (e.g., high-glucose ingestion or acute exercise) lead to a state of oxidative distress (detrimental to health) or oxidative eustress (beneficial to health). Emerging research indicates that redox responses are likely to be highly individualized, yet few studies report individual responses. Furthermore, the effects of complex redox stimuli (e.g., high-glucose-ingestion after exercise) on redox homeostasis remains unclear. We investigated the effect of acute exercise (oxidative eustress), high-glucose ingestion (oxidative distress), and high-glucose ingestion after exercise (both oxidative eu/distress), on commonly measured redox biomarkers in serum/plasma. Methods: In a randomized crossover fashion, eight healthy men (age: 28 ± 4 years; BMI: 24.5 ± 1.5 kg/m2 [mean ± SD]) completed two separate testing conditions; 1) consumption of a high-glucose mixed-nutrient meal (45% carbohydrate [1.1 g glucose.kg-1], 20% protein, and 35% fat) at rest (control trial), and 2) consumption of the same meal 3 h and 24 h after 1 h of moderate-intensity cycling exercise (exercise trial). Plasma and serum were analyzed for an array of commonly studied redox biomarkers. Results: Oxidative stress and antioxidant defense markers (hydrogen peroxide, 8-isoprostanes, catalase, superoxide dismutase, and nitrate levels) increased immediately after exercise (p < 0.05), whereas nitric oxide activity and thiobarbituric acid reactive substances (TBARS) remained similar to baseline (p > 0.118). Nitric oxide activity and nitrate levels decreased at 3 h post-exercise compared to pre-exercise baseline levels. Depending on when the high-glucose mixed nutrient meal was ingested and the postprandial timepoint investigated, oxidative stress and antioxidant defense biomarkers either increased (hydrogen peroxide, TBARS, and superoxide dismutase), decreased (hydrogen peroxide, 8-isoprostanes, superoxide dismutase, nitric oxide activity, nitrate, and nitrite), or remained similar to pre-meal baseline levels (hydrogen peroxide, 8-isoprostanes, TBARS, catalase, superoxide dismutase and nitrite). Redox responses exhibited large inter-individual variability in the magnitude and/or direction of responses. Conclusion: Findings highlight the necessity to interpret redox biomarkers in the context of the individual, biomarker measured, and stimuli observed. Individual redox responsiveness may be of physiological relevance and should be explored as a potential means to inform personalized redox intervention.
Asunto(s)
Antioxidantes , Nitratos , Masculino , Humanos , Adulto Joven , Adulto , Catalasa , Sustancias Reactivas al Ácido Tiobarbitúrico , Nitritos , Peróxido de Hidrógeno , Óxido Nítrico , Ejercicio Físico/fisiología , Oxidación-Reducción , Superóxido Dismutasa , Homeostasis , Glucosa , Biomarcadores , Isoprostanos , Ingestión de AlimentosRESUMEN
OBJECTIVE: The glucose tolerance test (GTT) is widely used in human and animal biomedical and pharmaceutical research. Despite its prevalent use, particularly in mouse metabolic phenotyping, to the best of our knowledge we are not aware of any studies that have attempted to qualitatively compare the metabolic events during a GTT in mice with those performed in humans. METHODS: Stable isotope labelled oral glucose tolerance tests (siOGTTs; [6,6-2H2]glucose) were performed in both human and mouse cohorts to provide greater resolution into postprandial glucose kinetics. The siOGTT allows for the partitioning of circulating glucose into that derived from exogenous and endogenous sources. Young adults spanning the spectrum of normal glucose tolerance (n = 221), impaired fasting (n = 14), and impaired glucose tolerance (n = 19) underwent a 75g siOGTT, whereas a 50 mg siOGTT was performed on chow (n = 43) and high-fat high-sucrose fed C57Bl6 male mice (n = 46). RESULTS: During the siOGTT in humans, there is a long period (>3hr) of glucose absorption and, accordingly, a large, sustained insulin response and robust suppression of lipolysis and endogenous glucose production (EGP), even in the presence of glucose intolerance. In contrast, mice appear to be highly reliant on glucose effectiveness to clear exogenous glucose and experience only modest, transient insulin responses with little, if any, suppression of EGP. In addition to the impaired stimulation of glucose uptake, mice with the worst glucose tolerance appear to have a paradoxical and persistent rise in EGP during the OGTT, likely related to handling stress. CONCLUSIONS: The metabolic response to the OGTT in mice and humans is highly divergent. The potential reasons for these differences and their impact on the interpretation of mouse glucose tolerance data and their translation to humans are discussed.
Asunto(s)
Deuterio/química , Marcaje Isotópico , Adolescente , Adulto , Animales , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Adulto JovenRESUMEN
Insulin and glucagon exert opposing actions on glucose metabolism, and their secretion is classically viewed as being inversely regulated. This is, however, context specific as protein ingestion concomitantly stimulates euglycemic insulin and glucagon secretion. It remains enigmatic how euglycemia is preserved under these conditions. Accordingly, we examined the systems-level mechanisms governing such endocrine control of glucose homeostasis. Eight healthy participants completed a water (control) and multidose whey protein ingestion trial designed to augment the protein-induced endocrine response. Glucose kinetics were measured using stable isotope tracer methodology. Protein ingestion induced marked hyperaminoacidemia, hyperinsulinemia (approximately sixfold basal), and unprecedented hyperglucagonemia (approximately eightfold basal) while suppressing free fatty acids. Both glucose disposal (Rd) and endogenous glucose production (EGP) increased by â¼25%, thereby maintaining euglycemia. This demonstrates 1) that protein ingestion can stimulate glucose Rd and EGP, 2) that postprandial inhibition of adipose lipolysis does not suppress EGP, and 3) that physiological hyperglucagonemia can override the hepatic actions of insulin, rendering the liver unresponsive to insulin-mediated EGP suppression. Finally, we argue that glucagon is a bona fide postprandial hormone that evolved to concurrently and synergistically work with insulin to regulate glucose, amino acid, and nitrogen metabolism. These findings may have implications for glucagon receptor antagonist or agonist-based therapies.
Asunto(s)
Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Glucemia/efectos de los fármacos , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/farmacología , Ácidos Grasos no Esterificados/sangre , Femenino , Humanos , Masculino , Periodo PosprandialRESUMEN
OBJECTIVE: Phosphatidylethanolamine (PtdEtn) is a major phospholipid in mammals. It is synthesized via two pathways, the CDP-ethanolamine pathway in the endoplasmic reticulum and the phosphatidylserine (PtdSer) decarboxylase (PSD) pathway in the mitochondria. While the CDP-ethanolamine pathway is considered the major route for PtdEtn synthesis in most mammalian tissues, little is known about the importance of the PSD pathway in vivo, especially in tissues enriched with mitochondria such as skeletal muscle. Therefore, we aimed to examine the role of the mitochondrial PSD pathway in regulating PtdEtn homeostasis in skeletal muscle in vivo. METHODS: To determine the functional significance of this pathway in skeletal muscle in vivo, an adeno-associated viral vector approach was employed to knockdown PSD expression in skeletal muscle of adult mice. Muscle lipid and metabolite profiling was performed using mass spectrometry. RESULTS: PSD knockdown disrupted muscle phospholipid homeostasis leading to an â¼25% reduction in PtdEtn and an â¼45% increase in PtdSer content. This was accompanied by the development of a severe myopathy, evident by a 40% loss in muscle mass as well as extensive myofiber damage as shown by increased DNA synthesis and central nucleation. In addition, PSD knockdown caused marked accumulation of abnormally appearing mitochondria that exhibited severely disrupted inner membrane integrity and reduced OXPHOS protein content. CONCLUSIONS: The PSD pathway has a significant role in maintaining phospholipid homeostasis in adult skeletal muscle. Moreover, PSD is essential for maintenance of mitochondrial integrity and skeletal muscle mass.