Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Prosthet Dent ; 129(1): 221-227, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34158174

RESUMEN

STATEMENT OF PROBLEM: A typical conversion process of a complete-arch immediate loading protocol entails preparing holes in a complete denture for connection to interim copings, which reduces the strength of the prosthesis. The excellent mechanical properties of milled polymethyl methacrylate (PMMA) disks may provide interim prostheses with improved strength. PURPOSE: The purpose of this in vitro study was to measure the flexural strength and failure load of simulated acrylic resin immediate implant-supported interim prostheses fabricated by conventional processing and computer-aided manufacturing. MATERIAL AND METHODS: A master patient model was created with an acrylic resin base and 2 BioHorizons Internal 4.5-mm-diameter implants placed with a 21.5-mm span and multiunit abutments (MUA) tightened to place. Two groups with different prosthodontic designs were used: one represented the standard fixed prosthesis with support at each end (noncantilever, NC), and the other group represented the cantilever portion of the prosthesis (cantilever, C). Two connection designs of prosthesis blocks to MUA abutments were evaluated: one with typical holes in the prosthesis for capturing interim copings and one with a low-profile coping. For the heat-processed PMMA groups (HP/NC and HP/C), wax patterns were milled, and heat-polymerized denture base PMMA prostheses were processed. The milled PMMA groups (M/NC and M/C) were milled from a tooth-shaded PMMA disk for the prosthesis blocks. The milled low-profile groups (Mlp/NC and Mlp/C) had identical dimensions except that connection to the low-profile coping was designed with a cement space and a narrow diameter screw access hole and was milled from a PMMA disk. The failure load (N) of the cantilever prostheses was recorded, and for NC groups, the 3-point flexural strength formula (MPa) was calculated. The Weibull modulus, characteristic strength, and summary statistics were computed, and the groups were statistically analyzed with ANOVA and the post hoc Tukey test (α=.05). RESULTS: The mean flexural strengths (MPa) were HP/NC=91.35 ±18.92; M/NC=143.94 ±36.79; Mlp/NC=117.06 ±13.86. Significant differences were found among groups (P<.001). Mean failure loads (N) and Weibull modulus (WM) of cantilever prosthesis strengths were for HP/C=512.66, WM=5.597; M/C=695.06, WM=4.875; Mlp/C=254.97, WM=1.797 (P<.001). CONCLUSIONS: Implant fixed interim structures milled from high-density PMMA blanks had a 35% higher flexural strength for both the standard prostheses and the cantilever prostheses than heat-processed denture base PMMA. The low-profile coping design was stronger than the heat-processed material, and the failure point was relocated from the lateral walls to the cervical margin area.


Asunto(s)
Materiales Dentales , Polimetil Metacrilato , Humanos , Polimetil Metacrilato/química , Materiales Dentales/química , Ensayo de Materiales , Resinas Acrílicas/química , Dentadura Completa
2.
J Prosthodont ; 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422719

RESUMEN

PURPOSE: Denture Stomatitis, a chronic mucosal inflammation associated with Candida albicans, is common among denture wearers. Several health conditions have been linked to chronic Candida infections. The complex, multifactorial nature of denture stomatitis requires the continuous pursuit of effective long-term solutions. The present in vitro study investigated the effect of incorporating organoselenium into 3D-printed denture base resin on C. albicans adhesion and biofilm formation. MATERIALS AND METHODS: Thirty disks were fabricated using 3D-printed denture base resin and assigned to three experimental groups (10/group): disks without organoselenium (control), disks with 0.5% organoselenium (0.5%SE), and disks with 1% organoselenium (1%SE). Each disk was incubated with approximately 1 × 106 cells/mL of C. albicans for 48 h. Microbial viability (CFU/mL) was quantified by the spread plate method, while Confocal laser scanning microscopy and scanning electron microscope were performed for quantifying the biofilm thickness and examining biofilm morphology, respectively. Data were analyzed using One-way ANOVA with Tukey's multiple comparisons test. RESULTS: CFU/mL was significantly (p < 0.05) higher in Control when compared with 0.5%SE and 1%SE, but no significant difference between 0.5%SE and 1%SE. A similar trend was observed with biofilm thickness except that there was no significant difference between the Control and 0.5%SE. There was C. albicans biofilm adhesion on the Control disks, with yeast cells and hyphae formation, whereas on 0.5%SE and 1%SE, there was inhibition of yeast cells transition to hyphae formation. CONCLUSIONS: Incorporation of organoselenium into 3D-printed denture base resin was effective in reducing C. albicans biofilm formation and growth on denture base material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA