Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 575(7784): 693-698, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31634899

RESUMEN

Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10, CoQ10): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1-CoQ10-NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Ferroptosis/genética , Glutatión/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Peroxidación de Lípido/genética , Ratones , Proteínas Mitocondriales/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
2.
Int J Cancer ; 147(11): 3224-3235, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818320

RESUMEN

The cystine/glutamate antiporter, system xc- , is essential for the efficient uptake of cystine into cells. Interest in the mechanisms of system xc- function soared with the recognition that system xc- presents the most upstream node of ferroptosis, a recently described form of regulated necrosis relevant for degenerative diseases and cancer. Since targeting system xc- hold the great potential to efficiently combat tumor growth and metastasis of certain tumors, we disrupted the substrate-specific subunit of system xc- , xCT (SLC7A11) in the highly metastatic mouse B16F10 melanoma cell line and assessed the impact on tumor growth and metastasis. Subcutaneous injection of tumor cells into the syngeneic B16F10 mouse melanoma model uncovered a marked decrease in the tumor-forming ability and growth of KO cells compared to control cell lines. Strikingly, the metastatic potential of KO cells was markedly reduced as shown in several in vivo models of experimental and spontaneous metastasis. Accordingly, survival rates of KO tumor-bearing mice were significantly prolonged in contrast to those transplanted with control cells. Analyzing the in vitro ability of KO and control B16F10 cells in terms of endothelial cell adhesion and spheroid formation revealed that xCT expression indeed plays an important role during metastasis. Hence, system xc- emerges to be essential for tumor metastasis in mice, thus qualifying as a highly attractive anticancer drug target, particularly in light of its dispensable role for normal life in mice.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Técnicas de Inactivación de Genes/métodos , Melanoma/patología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Tasa de Supervivencia
3.
Nat Chem Biol ; 13(1): 91-98, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27842070

RESUMEN

Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.


Asunto(s)
Apoptosis , Coenzima A Ligasas/metabolismo , Glutatión Peroxidasa/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/deficiencia , Femenino , Glutatión Peroxidasa/deficiencia , Humanos , Hipoglucemiantes/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Noqueados , Necrosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Tiazolidinedionas/farmacología
4.
Nat Chem Biol ; 13(1): 81-90, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27842066

RESUMEN

Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.


Asunto(s)
Ácido Araquidónico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Fosfolípidos/metabolismo , Animales , Ácido Araquidónico/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Línea Celular , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/deficiencia , Coenzima A Ligasas/metabolismo , Ácidos Grasos Insaturados/antagonistas & inhibidores , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Biochim Biophys Acta ; 1850(8): 1566-74, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25450170

RESUMEN

BACKGROUND: During maturation and storage, spermatozoa generate substantial amounts of reactive oxygen species (ROS) and are thus forced to cope with an increasingly oxidative environment that is both needed and detrimental to their biology. Such a janus-faceted intermediate needs to be tightly controlled and this is done by a wide array of redox enzymes. These enzymes not only have to prevent unspecific modifications of essential cellular biomolecules by quenching undesired ROS, but they are also required and often directly involved in critical protein modifications. SCOPE OF REVIEW: The present review is conceived to present an update on what is known about critical roles of redox enzymes, whereby special emphasis is put on the family of glutathione peroxidases, which for the time being presents the best characterized tasks during gametogenesis. MAJOR CONCLUSIONS: We therefore demonstrate that understanding the function of (seleno)thiol-based oxidases/reductases is not a trivial task and relevant knowledge will be mainly gained by using robust systems, as exemplified by several (conditional) knockout studies. We thus stress the importance of using such models for providing unequivocal evidence in the molecular understanding of redox regulatory mechanisms in sperm maturation. GENERAL SIGNIFICANCE: ROS are not merely detrimental by-products of metabolism and their proper generation and usage by specific enzymes is essential for vital functions as beautifully exemplified during male gametogenesis. As such, lessons learnt from thiol-based oxidases/reductases in male gametogenesis could be used as a general principle for other organs as it is most likely not only restricted to this developmental phase. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Animales , Glutatión Peroxidasa/metabolismo , Humanos , Masculino , Modelos Biológicos , Oxidación-Reducción , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Espermatozoides/citología
7.
Sci Rep ; 14(1): 7924, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575644

RESUMEN

Neonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis). The vitamin D precursor 7-dehydrocholesterol (7-DHC) may inhibit iron-dependent lipid peroxidation. Primary neurons underwent oxygen and glucose deprivation (OGD) injury and treatment with 7-DHC-elevating medications such as cariprazine (CAR) or vehicle. Postnatal day 9 mice underwent sham surgery or carotid artery ligation and hypoxia and received intraperitoneal CAR. In neurons, CAR administration resulted in significantly increased cell survival compared to vehicle controls, whether administered 48 h prior to or 30 min after OGD, and was associated with increased 7-DHC. In the mouse model, malondialdehyde and infarct area significantly increased after HIBI in the vehicle group, which were attenuated by post-treatment with CAR and were negatively correlated with tissue 7-DHC concentrations. Elevating 7-DHC concentrations with CAR was associated with improved cellular and tissue viability after hypoxic-ischemic injury, suggesting a novel therapeutic avenue.


Asunto(s)
Deshidrocolesteroles , Ferroptosis , Hipoxia-Isquemia Encefálica , Animales , Ratones , Animales Recién Nacidos , Encéfalo , Hipoxia/complicaciones , Oxígeno/uso terapéutico , Isquemia/complicaciones , Hierro/uso terapéutico
8.
Nat Cell Biol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009641

RESUMEN

Therapy resistance and metastasis, the most fatal steps in cancer, are often triggered by a (partial) activation of the epithelial-mesenchymal transition (EMT) programme. A mesenchymal phenotype predisposes to ferroptosis, a cell death pathway exerted by an iron and oxygen-radical-mediated peroxidation of phospholipids containing polyunsaturated fatty acids. We here show that various forms of EMT activation, including TGFß stimulation and acquired therapy resistance, increase ferroptosis susceptibility in cancer cells, which depends on the EMT transcription factor Zeb1. We demonstrate that Zeb1 increases the ratio of phospholipids containing pro-ferroptotic polyunsaturated fatty acids over cyto-protective monounsaturated fatty acids by modulating the differential expression of the underlying crucial enzymes stearoyl-Co-A desaturase 1 (SCD), fatty acid synthase (FASN), fatty acid desaturase 2 (FADS2), elongation of very long-chain fatty acid 5 (ELOVL5) and long-chain acyl-CoA synthetase 4 (ACSL4). Pharmacological inhibition of selected lipogenic enzymes (SCD and FADS2) allows the manipulation of ferroptosis sensitivity preferentially in high-Zeb1-expressing cancer cells. Our data are of potential translational relevance and suggest a combination of ferroptosis activators and SCD inhibitors for the treatment of aggressive cancers expressing high Zeb1.

9.
Sci Adv ; 10(11): eadk7329, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489367

RESUMEN

Small interfering RNAs (siRNAs) are widely used in biomedical research and in clinical trials. Here, we demonstrate that siRNA treatment is commonly associated with significant sensitization to ferroptosis, independently of the target protein knockdown. Genetically targeting mitochondrial antiviral-signaling protein (MAVS) reversed the siRNA-mediated sensitizing effect, but no activation of canonical MAVS signaling, which involves phosphorylation of IkBα and interferon regulatory transcription factor 3 (IRF3), was observed. In contrast, MAVS mediated a noncanonical signal resulting in a prominent increase in mitochondrial ROS levels, and increase in the BACH1/pNRF2 transcription factor ratio and GPX4 up-regulation, which was associated with a 50% decrease in intracellular glutathione levels. We conclude that siRNAs commonly sensitize to ferroptosis and may severely compromise the conclusions drawn from silencing approaches in biomedical research. Finally, as ferroptosis contributes to a variety of pathophysiological processes, we cannot exclude side effects in human siRNA-based therapeutical concepts that should be clinically tested.


Asunto(s)
Ferroptosis , Transducción de Señal , Humanos , ARN Interferente Pequeño/genética , Ferroptosis/genética , Regulación hacia Arriba , Factores de Transcripción/metabolismo
10.
J Toxicol Environ Health A ; 76(6): 345-53, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23557233

RESUMEN

The chemotherapeutic agent cisplatin (cDDP) is widely used to treat a variety of solid and hematological tumors. However, cDDP exerts severe side effects, such as nephrotoxicity, neurotoxicity, and bone-marrow suppression. The use of some dietary compounds to protect organs that are not targets in association with chemotherapy has been encouraged. This study evaluated the protective effects of chlorophyll b (CLb) on DNA damage induced by cDDP by use of single-cell gel electrophoresis (SCGE) assays. Further, this investigation also determined platinum (Pt) and magnesium (Mg) bioaccumulation in mice tissues after treatment with CLb alone and/or in association of cDDP (simultaneous treatment) by inductively coupled plasma-mass spectroscopy (ICP-MS). All parameters were studied in peripheral blood cells (PBC), kidneys, and liver of mice after administration of CLb (0.2 or 0.5 mg/kg of body weight [b.w.]), cDDP (6 mg/kg b.w.), and the combination CLb 0.2 plus cDDP or CLb 0.5 plus cDDP. Pt accumulation in liver and kidneys was higher than that found in PBC, while DNA damage was higher in kidneys and liver than in PBC. Further, treatment with CLb alone did not induce DNA damage. Evidence indicates that genotoxic effects produced by cDDP may not be related to Pt accumulation and distribution. In combined treatments, CLb decreased DNA damage in tissues, but the PT contents did not change and these treatments also showed that CLb may be an important source of Mg. Thus, our results indicate that consumption of CLb-rich foods may diminish the adverse health effects induced by cDDP exposure.


Asunto(s)
Antimutagênicos/farmacología , Antineoplásicos/toxicidad , Clorofila/farmacología , Cisplatino/toxicidad , Daño del ADN/efectos de los fármacos , Animales , Antineoplásicos/farmacocinética , Cisplatino/farmacocinética , Ensayo Cometa , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Compuestos de Magnesio/metabolismo , Masculino , Ratones , Compuestos de Platino/metabolismo
11.
Nat Struct Mol Biol ; 30(11): 1806-1815, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37957306

RESUMEN

Ferroptosis, marked by iron-dependent lipid peroxidation, may present an Achilles heel for the treatment of cancers. Ferroptosis suppressor protein-1 (FSP1), as the second ferroptosis mainstay, efficiently prevents lipid peroxidation via NAD(P)H-dependent reduction of quinones. Because its molecular mechanisms have remained obscure, we studied numerous FSP1 mutations present in cancer or identified by untargeted random mutagenesis. This mutational analysis elucidates the FAD/NAD(P)H-binding site and proton-transfer function of FSP1, which emerged to be evolutionarily conserved among different NADH quinone reductases. Using random mutagenesis screens, we uncover the mechanism of action of next-generation FSP1 inhibitors. Our studies identify the binding pocket of the first FSP1 inhibitor, iFSP1, and introduce the first species-independent FSP1 inhibitor, targeting the NAD(P)H-binding pocket. Conclusively, our study provides new insights into the molecular functions of FSP1 and enables the rational design of FSP1 inhibitors targeting cancer cells.


Asunto(s)
Ferroptosis , Ferroptosis/genética , NAD , Mutación , Mutagénesis , Sitios de Unión , Protones
12.
Mutat Res ; 726(2): 109-15, 2011 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-21820078

RESUMEN

Aim of this study was to investigate the cytotoxic and genotoxic properties of inorganic and organic mercury compounds, i.e., HgCl(2) and methylmercury (MeHg). In addition, the DNA-protective and antioxidant effects of the flavonoid quercetin (QC) were studied. All experiments were conducted with human-derived liver cells (HepG2), which possess antioxidant and drug-metabolizing enzymes in an inducible form. 8-Hydroxydeoxyguanosine (8-OHdG) and comet formation were monitored as endpoints of DNA damage. The impact of the metal compounds on the redox status was also investigated, since it is assumed that their toxic effects are due to oxidative damage. A number of biochemical parameters related to oxidative stress, namely glutathione, malondialdehyde, protein carbonyl and formation of reactive oxygen species (ROS) were measured after treatment of the cells with the mercury compounds in the presence and absence of quercetin. To elucidate the mechanisms that underlie the effects of QC, three protocols (pre-, simultaneous and post-treatment) were used. Both mercury compounds (range 0.1-5.0µM) caused induction of DNA migration and formation of 8-OHdG. In combination with the flavonoid (range 0.1-5.0µM), DNA-protective effects of QC were observed after pre- and simultaneous treatment but not when the flavonoid was added after treatment with the metal compounds. Exposure to the metal compounds led also to substantial changes of all parameters of the redox status and co-treatment experiments with QC showed that these alterations are reversed by the flavonoid. Taken together, the results of our experiments indicate that these two mercury compounds cause DNA damage and oxidative stress in human-derived liver cells and that the flavonoid reduces these effects. Since the concentrations of the metals and of the flavonoids used in the present work reflect human exposure, our findings can be taken as an indication that QC may protect humans against the adverse effects caused by the metal.


Asunto(s)
Antimutagênicos/farmacología , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Oxidación-Reducción/efectos de los fármacos , Quercetina/farmacología , 8-Hidroxi-2'-Desoxicoguanosina , Supervivencia Celular , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análisis , Células Hep G2 , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
Arch Toxicol ; 85(9): 1151-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21286687

RESUMEN

Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 µg/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.


Asunto(s)
Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Mutágenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , Animales , Catalasa/metabolismo , Ensayo Cometa , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/enzimología , Leucocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Compuestos de Metilmercurio/sangre , Compuestos de Metilmercurio/farmacocinética , Mutágenos/farmacocinética , Ratas , Ratas Wistar
14.
Ecotoxicol Environ Saf ; 74(3): 487-93, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20970192

RESUMEN

The present study evaluates a possible protective effect of fish oil against oxidative damage promoted by methylmercury (MeHg) in sub-chronically exposed rats. Reduced glutathione peroxidase and catalase enzyme activity and reduced glutathione levels were observed in MeHg-exposed animals compared to controls. Methylmercury exposure was also associated with DNA damage. Administration of fish oil to the methylmercury-exposed animals did not ameliorate enzyme activity or glutathione levels. On the other hand, a significant DNA protective effect (about 30%) was observed with fish oil treatment. There were no differences in the total mercury concentration in rat liver, kidney, heart or brain after MeHg administration with or without fish oil co-administration. Histopathological analyses showed a significant leukocyte infiltration in rat tissues after MeHg exposure, but this effect was significantly reduced after co-administration of fish oil. Taken together, our findings demonstrate oxidative damage even after low-level MeHg exposure and the protective effect of fish oil. This protection seems not to be related to antioxidant defenses or mercury re-distribution in rat tissues. It is probably due to the anti-inflammatory effects of fish oil.


Asunto(s)
Antioxidantes/farmacología , Aceites de Pescado/farmacología , Compuestos de Metilmercurio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Catalasa/metabolismo , Daño del ADN/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Mercurio/metabolismo , Mercurio/toxicidad , Miocardio/metabolismo , Miocardio/patología , Ratas , Ratas Wistar
15.
Mutagenesis ; 25(3): 223-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20032005

RESUMEN

Silybin (SB), a constituent of the medicinal plant Silybum marianum, is reported to be a potent hepatoprotective agent, but little is currently known regarding its genotoxicity, mutagenicity and potential chemopreventive properties. In this study, we evaluated the ability of SB to induce DNA migration and micronuclei (MN) formation in human hepatoma cells (HepG2). Also, possible preventive effects of SB on MN formation induced by three different mutagens, bleomycin (BLEO), benzo[a]pyrene (B[a]P) and aflatoxin B(1) (AFB(1)), were studied. To clarify the possible mechanism of SB antimutagenicity, three treatment protocols were applied: pretreatment, in which SB was added before the application of the mutagens; simultaneous treatment, in which SB was added during treatment and post-treatment, in which SB was added after the application of the mutagens. At concentrations up to 100 microM, SB was non-genotoxic, while at a concentration of 200 microM, SB induced DNA migration, generated oxidized DNA bases, reduced cell viability, decreased the replicative index of the cells and induced oxidative stress. It is noteworthy that SB was able to reduce the genotoxic effect induced by B[a]P, BLEO and AFB(1) in pretreatment and simultaneous treatments but had no significant effect on DNA damage induction in post-treatment. Taken together, our findings indicate that SB presents anti-genotoxic activity in vitro, which suggests potential use as a chemopreventive agent.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Mutágenos/toxicidad , Silimarina/toxicidad , Aflatoxina B1/toxicidad , Benzo(a)pireno/toxicidad , Bleomicina/toxicidad , Muerte Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , ADN/metabolismo , Daño del ADN , ADN-Formamidopirimidina Glicosilasa/metabolismo , Endonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Mutágenos/química , Especies Reactivas de Oxígeno/metabolismo , Silibina , Silimarina/química
16.
Cell Death Dis ; 11(3): 192, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184394

RESUMEN

Conditions of impaired adrenal function and tissue destruction, such as in Addison's disease, and treatment resistance of adrenocortical carcinoma (ACC) necessitate improved understanding of the pathophysiology of adrenal cell death. Due to relevant oxidative processes in the adrenal cortex, our study investigated the role of ferroptosis, an iron-dependent cell death mechanism and found high adrenocortical expression of glutathione peroxidase 4 (GPX4) and long-chain-fatty-acid CoA ligase 4 (ACSL4) genes, key factors in the initiation of ferroptosis. By applying MALDI mass spectrometry imaging to normal and neoplastic adrenocortical tissue, we detected high abundance of arachidonic and adrenic acid, two long chain polyunsaturated fatty acids which undergo peroxidation during ferroptosis. In three available adrenal cortex cell models (H295R, CU-ACC1 and CU-ACC-2) a high susceptibility to GPX4 inhibition with RSL3 was documented with EC50 values of 5.7 × 10-8, 8.1 × 10-7 and 2.1 × 10-8 M, respectively, while all non-steroidogenic cells were significantly less sensitive. Complete block of GPX4 activity by RSL3 led to ferroptosis which was completely reversed in adrenal cortex cells by inhibition of steroidogenesis with ketoconazole but not by blocking the final step of cortisol synthesis with metyrapone. Mitotane, the only approved drug for ACC did not induce ferroptosis, despite strong induction of lipid peroxidation in ACC cells. Together, this report is the first to demonstrate extraordinary sensitivity of adrenal cortex cells to ferroptosis dependent on their active steroid synthetic pathways. Mitotane does not induce this form of cell death in ACC cells.


Asunto(s)
Corteza Suprarrenal/efectos de los fármacos , Enfermedades de las Glándulas Suprarrenales/genética , Ferroptosis/efectos de los fármacos , Hormonas Esteroides Gonadales/metabolismo , Muerte Celular/efectos de los fármacos , Humanos
17.
Mutat Res ; 676(1-2): 83-6, 2009 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-19442572

RESUMEN

The use of azo dyes by different industries can cause direct and/or indirect effects on human and environmental health due to the discharge of industrial effluents that contain these toxic compounds. Several studies have demonstrated the genotoxic effects of various azo dyes, but information on the DNA damage caused by Disperse Red 1 and Disperse Orange 1 is unavailable, although these dyes are used in dyeing processes in many countries. The aim of the present study was to evaluate the mutagenic activity of Disperse Red 1 and Disperse Orange 1 using the micronucleus (MN) assay in human lymphocytes and in HepG2 cells. In the lymphocyte assay, it was found that the number of MN induced by the lowest concentration of each dye (0.2 microg/mL) was similar to that of the negative control. At the other concentrations, a dose response MN formation was observed up to 1.0 microg/mL. At higher dose levels, the number of MN decreased. For the HepG2 cells the results were similar. With both dyes a dose dependent increase in the frequency of MN was detected. However for the HepG2, the threshold for this increase was 2.0 microg/mL, while at higher doses a reduction in the MN number was observed. The proliferation index was also calculated in order to evaluate acute toxicity during the test. No differences were detected between the different concentrations tested and the negative control.


Asunto(s)
Compuestos Azo/toxicidad , Daño del ADN/efectos de los fármacos , Linfocitos/efectos de los fármacos , Pruebas de Micronúcleos , Mutágenos/toxicidad , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Colorantes/toxicidad , Dermatitis Alérgica por Contacto/etiología , Relación Dosis-Respuesta a Droga , Humanos , Residuos Industriales/efectos adversos , Recuento de Leucocitos/estadística & datos numéricos , Linfocitos/metabolismo , Masculino , Pruebas de Mutagenicidad , Células Tumorales Cultivadas , Contaminantes Químicos del Agua/toxicidad
18.
Arch Toxicol ; 83(1): 81-6, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18528685

RESUMEN

The mushroom Agaricus blazei is studied for its nutraceutical potential and as a medicinal supplement. The aim of the present study was to investigate the chemoprotective effect of beta-glucan extracted from the mushroom A. blazei against DNA damage induced by benzo[a]pyrene (B[a]P), using the comet assay (genotoxicity) and micronucleus assay with cytokinesis block (mutagenicity) in a human hepatoma cell line (HepG2). To elucidate the possible beta-glucan mechanism of action, desmutagenesis or bioantimutagenesis types, three treatment protocols were tested: simultaneous, pre-treatment, and presimultaneous. The results showed that beta-glucan does not exert genotoxic or mutagenic effect, but that it does protect against DNA damage caused by B[a]P in every protocol tested. The data suggest that beta-glucan acts through binding to B[a]P or the capture of free radicals produced during its activation. On the other hand, the pre-treatment results also suggest the possibility that beta-glucan modulates cell metabolism.


Asunto(s)
Agaricus/química , Antimutagênicos/farmacología , beta-Glucanos/farmacología , Antimutagênicos/administración & dosificación , Antimutagênicos/aislamiento & purificación , Benzo(a)pireno/toxicidad , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Esquema de Medicación , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Radicales Libres/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Pruebas de Micronúcleos , Mutágenos/toxicidad , beta-Glucanos/administración & dosificación , beta-Glucanos/aislamiento & purificación
19.
J Med Chem ; 62(1): 266-275, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29688708

RESUMEN

Glutathione peroxidase 4 (GPX4) is essential for cell membrane repair, inflammation suppression, and ferroptosis inhibition. GPX4 upregulation provides unique drug discovery opportunities for inflammation and ferroptosis-related diseases. However, rational design of protein activators is challenging. Until now, no compound has been reported to activate the enzyme activity of GPX4. Here, we identified a potential allosteric site in GPX4 and successfully found eight GPX4 activators using a novel computational strategy and experimental studies. Compound 1 from the virtual screen increased GPX4 activity, suppressed ferroptosis, reduced pro-inflammatory lipid mediator production, and inhibited NF-κB pathway activation. Further chemical synthesis and structure-activity relationship studies revealed seven more activators. The strongest compound, 1d4, increased GPX4 activity to 150% at 20 µM in the cell-free assay and 61 µM in cell extracts. Therefore, we demonstrated that GPX4 can be directly activated using chemical compounds to suppress ferroptosis and inflammation. Meanwhile, the discovery of GPX4 activators verified the possibility of rational design of allosteric activators.


Asunto(s)
Apoptosis , Glutatión Peroxidasa/química , Sulfonamidas/química , Regulación Alostérica , Sitio Alostérico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Eicosanoides/biosíntesis , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis , FN-kappa B/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Piperazinas/farmacología , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/metabolismo , Sulfonamidas/farmacología
20.
J Clin Invest ; 128(8): 3341-3355, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29939160

RESUMEN

High-risk neuroblastoma is a devastating malignancy with very limited therapeutic options. Here, we identify withaferin A (WA) as a natural ferroptosis-inducing agent in neuroblastoma, which acts through a novel double-edged mechanism. WA dose-dependently either activates the nuclear factor-like 2 pathway through targeting of Kelch-like ECH-associated protein 1 (noncanonical ferroptosis induction) or inactivates glutathione peroxidase 4 (canonical ferroptosis induction). Noncanonical ferroptosis induction is characterized by an increase in intracellular labile Fe(II) upon excessive activation of heme oxygenase-1, which is sufficient to induce ferroptosis. This double-edged mechanism might explain the superior efficacy of WA as compared with etoposide or cisplatin in killing a heterogeneous panel of high-risk neuroblastoma cells, and in suppressing the growth and relapse rate of neuroblastoma xenografts. Nano-targeting of WA allows systemic application and suppressed tumor growth due to an enhanced accumulation at the tumor site. Collectively, our data propose a novel therapeutic strategy to efficiently kill cancer cells by ferroptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Witanólidos/farmacología , Animales , Línea Celular Tumoral , Embrión de Pollo , Hemo-Oxigenasa 1/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA