Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(2): 410-423.e17, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32187527

RESUMEN

Memories are believed to be encoded by sparse ensembles of neurons in the brain. However, it remains unclear whether there is functional heterogeneity within individual memory engrams, i.e., if separate neuronal subpopulations encode distinct aspects of the memory and drive memory expression differently. Here, we show that contextual fear memory engrams in the mouse dentate gyrus contain functionally distinct neuronal ensembles, genetically defined by the Fos- or Npas4-dependent transcriptional pathways. The Fos-dependent ensemble promotes memory generalization and receives enhanced excitatory synaptic inputs from the medial entorhinal cortex, which we find itself also mediates generalization. The Npas4-dependent ensemble promotes memory discrimination and receives enhanced inhibitory drive from local cholecystokinin-expressing interneurons, the activity of which is required for discrimination. Our study provides causal evidence for functional heterogeneity within the memory engram and reveals synaptic and circuit mechanisms used by each ensemble to regulate the memory discrimination-generalization balance.


Asunto(s)
Miedo/fisiología , Memoria/fisiología , Neuronas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/fisiología , Giro Dentado/fisiología , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo
2.
Cell ; 157(7): 1535-51, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949967

RESUMEN

Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics.


Asunto(s)
Vías Nerviosas , Núcleo Accumbens/fisiología , Conducta Social , Área Tegmental Ventral/fisiología , Animales , Señalización del Calcio , Femenino , Ratones , Núcleo Accumbens/citología , Fotometría/métodos , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/metabolismo , Recompensa , Rodopsina/química , Rodopsina/metabolismo , Área Tegmental Ventral/citología
3.
Annu Rev Neurosci ; 42: 271-293, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30939100

RESUMEN

Magnetic fields pass through tissue undiminished and without producing harmful effects, motivating their use as a wireless, minimally invasive means to control neural activity. Here, we review mechanisms and techniques coupling magnetic fields to changes in electrochemical potentials across neuronal membranes. Biological magnetoreception, although incompletely understood, is discussed as a potential source of inspiration. The emergence of magnetic properties in materials is reviewed to clarify the distinction between biomolecules containing transition metals and ferrite nanoparticles that exhibit significant net moments. We describe recent developments in the use of magnetic nanomaterials as transducers converting magnetic stimuli to forms readily perceived by neurons and discuss opportunities for multiplexed and bidirectional control as well as the challenges posed by delivery to the brain. The variety of magnetic field conditions and mechanisms by which they can be coupled to neuronal signaling cascades highlights the desirability of continued interchange between magnetism physics and neurobiology.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/fisiología , Campos Magnéticos , Red Nerviosa/fisiología , Animales , Ansiedad/fisiopatología , Humanos , Neuronas/fisiología
4.
Nat Methods ; 20(11): 1802-1809, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857906

RESUMEN

We develop soft and stretchable fatigue-resistant hydrogel optical fibers that enable optogenetic modulation of peripheral nerves in naturally behaving animals during persistent locomotion. The formation of polymeric nanocrystalline domains within the hydrogels yields fibers with low optical losses of 1.07 dB cm-1, Young's modulus of 1.6 MPa, stretchability of 200% and fatigue strength of 1.4 MPa against 30,000 stretch cycles. The hydrogel fibers permitted light delivery to the sciatic nerve, optogenetically activating hindlimb muscles in Thy1::ChR2 mice during 6-week voluntary wheel running assays while experiencing repeated deformation. The fibers additionally enabled optical inhibition of pain hypersensitivity in an inflammatory model in TRPV1::NpHR mice over an 8-week period. Our hydrogel fibers offer a motion-adaptable and robust solution to peripheral nerve optogenetics, facilitating the investigation of somatosensation.


Asunto(s)
Fibras Ópticas , Optogenética , Ratones , Animales , Hidrogeles , Actividad Motora , Nervio Ciático/fisiología , Locomoción
5.
Brain Behav Immun ; 115: 131-142, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820974

RESUMEN

Region-specific genetic manipulation of glial cells remains challenging due to the lack of anatomically selective transgenic models. Although local transduction is achievable with viral vectors, uniform recombination can be challenging in larger brain regions. We investigated the efficacy of intraparenchymal delivery of the tamoxifen metabolite endoxifen using inducible cre reporter mice. After observing localized reporter induction following stereotaxic injections of endoxifen in CX3CR1creERT2 mice, we carried out chronic delivery via osmotic pumps attached to bilateral cannulas made of stainless steel or microfluidic polymer fibers. Analysis of reporter expression in sections or iDISCO-cleared brains from TMEM119creERT2 mice revealed widespread induction following chronic infusion. Neuronal damage and gliosis were more prevalent around steel cannulas than polymer fibers, and glial reactivity was further attenuated when devices were implanted two months before drug delivery. In summary, region-specific recombination is achievable in glia with minimal tissue damage after endoxifen delivery via microfluidic polymer implants.


Asunto(s)
Microglía , Polímeros , Ratones , Animales , Microglía/metabolismo , Microfluídica , Tamoxifeno/farmacología
6.
Anal Chem ; 93(17): 6646-6655, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33797893

RESUMEN

Developing tools that are able to monitor transient neurochemical dynamics is important to decipher brain chemistry and function. Multifunctional polymer-based fibers have been recently applied to monitor and modulate neural activity. Here, we explore the potential of polymer fibers comprising six graphite-doped electrodes and two microfluidic channels within a flexible polycarbonate body as a platform for sensing pH and neurometabolic lactate. Electrodes were made into potentiometric sensors (responsive to pH) or amperometric sensors (lactate biosensors). The growth of an iridium oxide layer made the fiber electrodes responsive to pH in a physiologically relevant range. Lactate biosensors were fabricated via platinum black growth on the fiber electrode, followed by an enzyme layer, making them responsive to lactate concentration. Lactate fiber biosensors detected transient neurometabolic lactate changes in an in vivo mouse model. Lactate concentration changes were associated with spreading depolarizations, known to be detrimental to the injured brain. Induced waves were identified by a signature lactate concentration change profile and measured as having a speed of ∼2.7 mm/min (n = 4 waves). Our work highlights the potential applications of fiber-based biosensors for direct monitoring of brain metabolites in the context of injury.


Asunto(s)
Técnicas Biosensibles , Grafito , Animales , Electrodos , Concentración de Iones de Hidrógeno , Ácido Láctico , Ratones
7.
Adv Funct Mater ; 31(43)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34924913

RESUMEN

Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.

8.
Nano Lett ; 20(9): 6535-6541, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786937

RESUMEN

Understanding and modulating proton-mediated biochemical processes in living organisms have been impeded by the lack of tools to control local pH. Here, we design nanotransducers capable of converting noninvasive alternating magnetic fields (AMFs) into protons in physiological environments by combining magnetic nanoparticles (MNPs) with polymeric scaffolds. When exposed to AMFs, the heat dissipated by MNPs triggered a hydrolytic degradation of surrounding polyanhydride or polyester, releasing protons into the extracellular space. pH changes induced by these nanotransducers can be tuned by changing the polymer chemistry or AMF stimulation parameters. Remote magnetic control of local protons was shown to trigger acid-sensing ion channels and to evoke intracellular calcium influx in neurons. By offering a wireless modulation of local pH, our approach can accelerate the mechanistic investigation of the role of protons in biochemical signaling in the nervous system.


Asunto(s)
Nanopartículas , Protones , Concentración de Iones de Hidrógeno , Campos Magnéticos , Magnetismo
9.
Angew Chem Int Ed Engl ; 60(33): 18295-18302, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34097813

RESUMEN

Redox cofactors mediate many enzymatic processes and are increasingly employed in biomedical and energy applications. Exploring the influence of external magnetic fields on redox cofactor chemistry can enhance our understanding of magnetic-field-sensitive biological processes and allow the application of magnetic fields to modulate redox reactions involving cofactors. Through a combination of experiments and modeling, we investigate the influence of magnetic fields on electrochemical reactions in redox cofactor solutions. By employing flavin mononucleotide (FMN) cofactor as a model system, we characterize magnetically induced changes in Faradaic currents. We find that radical pair intermediates have negligible influence on current increases in FMN solution upon application of a magnetic field. The dominant mechanism underlying the observed current increases is the magneto-hydrodynamic effect. We extend our analyses to other diffusion-limited electrochemical reactions of redox cofactor solutions and arrive at similar conclusions, highlighting the opportunity to use this framework in redox cofactor chemistry.


Asunto(s)
Técnicas Electroquímicas , Mononucleótido de Flavina/química , Hidrodinámica , Campos Magnéticos , Oxidación-Reducción , Soluciones
10.
Angew Chem Int Ed Engl ; 60(37): 20325-20330, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34265141

RESUMEN

Despite the critical role played by carbon monoxide (CO) in physiological and pathological signaling events, current approaches to deliver this messenger molecule are often accompanied by off-target effects and offer limited control over release kinetics. To address these challenges, we develop an electrochemical approach that affords on-demand release of CO through reduction of carbon dioxide (CO2 ) dissolved in the extracellular space. Electrocatalytic generation of CO by cobalt phthalocyanine molecular catalysts modulates signaling pathways mediated by a CO receptor soluble guanylyl cyclase. Furthermore, by tuning the applied voltage during electrocatalysis, we explore the effect of the CO release kinetics on CO-dependent neuronal signaling. Finally, we integrate components of our electrochemical platform into microscale fibers to produce CO in a spatially-restricted manner and to activate signaling cascades in the targeted cells. By offering on-demand local synthesis of CO, our approach may facilitate the studies of physiological processes affected by this gaseous molecular messenger.


Asunto(s)
Monóxido de Carbono/metabolismo , Técnicas Electroquímicas , Transducción de Señal , Monóxido de Carbono/química , Células HEK293 , Humanos
11.
Adv Funct Mater ; 30(36)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-35531589

RESUMEN

Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, we motivate and demonstrate an extension of this concept, magnetothermal multiplexing, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro.

12.
Phys Chem Chem Phys ; 22(26): 14976-14982, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32588846

RESUMEN

Machine learning is a valuable tool in the development of chemical technologies but its applications into supramolecular chemistry have been limited. Here, the utility of kernel-based support vector machine learning using density functional theory calculations as training data is evaluated when used to predict equilibrium binding coefficients of small molecules with cucurbit[7]uril (CB[7]). We find that utilising SVMs may confer some predictive ability. This algorithm was then used to predict the binding of drugs TAK-580 and selumetinib. The algorithm did predict strong binding for TAK-580 and poor binding for selumetinib, and these results were experimentally validated. It was discovered that the larger homologue cucurbit[8]uril (CB[8]) is partial to selumetinib, suggesting an opportunity for tunable release by introducing different concentrations of CB[7] or CB[8] into a hydrogel depot. We qualitatively demonstrated that these drugs may have utility in combination against gliomas. Finally, mass transfer simulations show CB[7] can independently tune the release of TAK-580 without affecting selumetinib. This work gives specific evidence that a machine learning approach to recognition of small molecules by macrocycles has merit and reinforces the view that machine learning may prove valuable in the development of drug delivery systems and supramolecular chemistry more broadly.


Asunto(s)
Bencimidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Compuestos Heterocíclicos con 3 Anillos/química , Imidazoles/química , Teoría Funcional de la Densidad , Modelos Químicos , Máquina de Vectores de Soporte
13.
Chem Soc Rev ; 48(6): 1826-1852, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30815657

RESUMEN

Neurological and psychiatric conditions pose an increasing socioeconomic burden on our aging society. Our ability to understand and treat these conditions relies on the development of reliable tools to study the dynamics of the underlying neural circuits. Despite significant progress in approaches and devices to sense and modulate neural activity, further refinement is required on the spatiotemporal resolution, cell-type selectivity, and long-term stability of neural interfaces. Guided by the principles of neural transduction and by the materials properties of the neural tissue, recent advances in neural interrogation approaches rely on flexible and multifunctional devices. Among these approaches, multimaterial fibers have emerged as integrated tools for sensing and delivering of multiple signals to and from the neural tissue. Fiber-based neural probes are produced by thermal drawing process, which is the manufacturing approach used in optical fiber fabrication. This technology allows straightforward incorporation of multiple functional components into microstructured fibers at the level of their macroscale models, preforms, with a wide range of geometries. Here we will introduce the multimaterial fiber technology, its applications in engineering fields, and its adoption for the design of multifunctional and flexible neural interfaces. We will discuss examples of fiber-based neural probes tailored to the electrophysiological recording, optical neuromodulation, and delivery of drugs and genes into the rodent brain and spinal cord, as well as their emerging use for studies of nerve growth and repair.


Asunto(s)
Técnicas Biosensibles/instrumentación , Encéfalo/fisiología , Electrónica/instrumentación , Neurociencias/instrumentación , Fibras Ópticas , Optogenética/instrumentación , Animales , Diseño de Equipo , Humanos , Neuronas/fisiología , Docilidad
14.
Acc Chem Res ; 51(4): 829-838, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29561583

RESUMEN

Multifunctional devices for modulation and probing of neuronal activity during free behavior facilitate studies of functions and pathologies of the nervous system. Probes composed of stiff materials, such as metals and semiconductors, exhibit elastic and chemical mismatch with the neural tissue, which is hypothesized to contribute to sustained tissue damage and gliosis. Dense glial scars have been found to encapsulate implanted devices, corrode their surfaces, and often yield poor recording quality in long-term experiments. Motivated by the hypothesis that reducing the mechanical stiffness of implanted probes may improve their long-term reliability, a variety of probes based on soft materials have been developed. In addition to enabling electrical neural recording, these probes have been engineered to take advantage of genetic tools for optical neuromodulation. With the emergence of optogenetics, it became possible to optically excite or inhibit genetically identifiable cell types via expression of light-sensitive opsins. Optogenetics experiments often demand implantable multifunctional devices to optically stimulate, deliver viral vectors and drugs, and simultaneously record electrophysiological signals from the specified cells within the nervous system. Recent advances in microcontact printing and microfabrication techniques have equipped flexible probes with microscale light-emitting diodes (µLEDs), waveguides, and microfluidic channels. Complementary to these approaches, fiber drawing has emerged as a scalable route to integration of multiple functional features within miniature and flexible neural probes. The thermal drawing process relies on the fabrication of macroscale models containing the materials of interest, which are then drawn into microstructured fibers with predefined cross-sectional geometries. We have recently applied this approach to produce fibers integrating conductive electrodes for extracellular recording of single- and multineuron potentials, low-loss optical waveguides for optogenetic neuromodulation, and microfluidic channels for drug and viral vector delivery. These devices allowed dynamic investigation of the time course of opsin expression across multiple brain regions and enabled pairing of optical stimulation with local pharmacological intervention in behaving animals. Neural probes designed to interface with the spinal cord, a viscoelastic tissue undergoing repeated strain during normal movement, rely on the integration of soft and flexible materials to avoid injury and device failure. Employing soft substrates, such as parylene C and poly-(dimethylsiloxane), for electrode and µLED arrays permitted stimulation and recording of neural activity on the surface of the spinal cord. Similarly, thermally drawn flexible and stretchable optoelectronic fibers that resemble the fibrous structure of the spinal cord were implanted without any significant inflammatory reaction in the vicinity of the probes. These fibers enabled simultaneous recording and optogenetic stimulation of neural activity in the spinal cord. In this Account, we review the applications of multifunctional fibers and other integrated devices for optoelectronic probing of neural circuits and discuss engineering directions that may facilitate future studies of nerve repair and accelerate the development of bioelectronic medical devices.


Asunto(s)
Bioingeniería/instrumentación , Neurociencias/instrumentación , Fibras Ópticas , Animales , Electrónica Médica , Humanos
15.
Phys Biol ; 15(3): 031002, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29205173

RESUMEN

This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.


Asunto(s)
Comunicación Celular/fisiología , Polímeros/química , Semiconductores , Propiedades de Superficie
17.
Nano Lett ; 16(10): 6303-6310, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27622711

RESUMEN

Targeted cancer therapies require a precise determination of the underlying biological processes driving tumorigenesis within the complex tumor microenvironment. Therefore, new diagnostic tools that capture the molecular activity at the disease site in vivo are needed to better understand tumor behavior and ultimately maximize therapeutic responses. Matrix metalloproteinases (MMPs) drive multiple aspects of tumorigenesis, and their activity can be monitored using engineered peptide substrates as protease-specific probes. To identify tumor specific activity profiles, local sampling of the tumor microenvironment is necessary, such as through remote control of probes, which are only activated at the tumor site. Alternating magnetic fields (AMFs) provide an attractive option to remotely apply local triggering signals because they penetrate deep into the body and are not likely to interfere with biological processes due to the weak magnetic properties of tissue. Here, we report the design and evaluation of a protease-activity nanosensor that can be remotely activated at the site of disease via an AMF at 515 kHz and 15 kA/m. Our nanosensor was composed of thermosensitive liposomes containing functionalized protease substrates that were unveiled at the target site by remotely triggered heat dissipation of coencapsulated magnetic nanoparticles (MNPs). This nanosensor was combined with a unique detection assay to quantify the amount of cleaved substrates in the urine. We applied this spatiotemporally controlled system to determine tumor protease activity in vivo and identified differences in substrate cleavage profiles between two mouse models of human colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/epidemiología , Campos Magnéticos , Nanopartículas de Magnetita , Metaloproteinasas de la Matriz/metabolismo , Animales , Línea Celular Tumoral , Compuestos Férricos , Humanos , Liposomas , Ratones , Péptidos
18.
Nano Lett ; 16(2): 1345-51, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26756463

RESUMEN

From magnetic resonance imaging to cancer hyperthermia and wireless control of cell signaling, ferrite nanoparticles produced by thermal decomposition methods are ubiquitous across biomedical applications. While well-established synthetic protocols allow for precise control over the size and shape of the magnetic nanoparticles, structural defects within seemingly single-crystalline materials contribute to variability in the reported magnetic properties. We found that stabilization of metastable wüstite in commonly used hydrocarbon solvents contributed to significant cation disorder, leading to nanoparticles with poor hyperthermic efficiencies and transverse relaxivities. By introducing aromatic ethers that undergo radical decomposition upon thermolysis, the electrochemical potential of the solvent environment was tuned to favor the ferrimagnetic phase. Structural and magnetic characterization identified hallmark features of nearly defect-free ferrite nanoparticles that could not be demonstrated through postsynthesis oxidation with nearly 500% increase in the specific loss powers and transverse relaxivity times compared to similarly sized nanoparticles containing defects. The improved crystallinity of the nanoparticles enabled rapid wireless control of intracellular calcium. Our work demonstrates that redox tuning during solvent thermolysis can generate potent theranostic agents through selective phase control in ferrites and can be extended to other transition metal oxides relevant to memory and electrochemical storage devices.

20.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895451

RESUMEN

Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA