Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401844

RESUMEN

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Asunto(s)
Factor H de Complemento , Receptores de Complemento 3b , Proteínas Recombinantes de Fusión , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/química , Factor H de Complemento/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Activación de Complemento/efectos de los fármacos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Hemólisis/efectos de los fármacos , Vía Alternativa del Complemento/efectos de los fármacos , Inactivadores del Complemento/farmacología , Eritrocitos/metabolismo
2.
Antioxidants (Basel) ; 13(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38790695

RESUMEN

Post-hepatectomy liver failure (PHLF) remains the major contributor to death after liver resection. Oxidative stress is associated with postoperative complications, but its impact on liver function is unclear. This first in-human, prospective, single-center, observational pilot study evaluated perioperative oxidative stress and PHLF according to the ISGLS (International Study Group for Liver Surgery). Serum 8-isoprostane, 4-hydroxynonenal (4-HNE), total antioxidative capacity, vitamins A and E, and intraoperative, sequential hepatic tissue 4-HNE and UCP2 (uncoupling protein 2) immunohistochemistry (IHC) were assessed. The interaction with known risk factors for PHLF and the predictive potential of oxidative stress markers were analyzed. Overall, 52 patients were included (69.2% major liver resection). Thirteen patients (25%) experienced PHLF, a major factor for 90-day mortality (23% vs. 0%; p = 0.013). Post-resection, pro-oxidative 8-isoprostane significantly increased (p = 0.038), while 4-HNE declined immediately (p < 0.001). Antioxidative markers showed patterns of consumption starting post-resection (p < 0.001). Liver tissue oxidative stress increased stepwise from biopsies taken after laparotomy to post-resection in situ liver and resection specimens (all p < 0.001). Cholangiocarcinoma patients demonstrated significantly higher serum and tissue oxidative stress levels at various timepoints, with consistently higher preoperative values in advanced tumor stages. Combining intraoperative, post-resection 4-HNE serum levels and in situ IHC early predicted PHLF with an AUC of 0.855 (63.6% vs. 0%; p < 0.001). This was also associated with grade B/C PHLF (36.4% vs. 0%; p = 0.021) and 90-day mortality (18.2% vs. 0%; p = 0.036). In conclusion, distinct patterns of perioperative oxidative stress levels occur in patients with liver dysfunction. Combining intraoperative serum and liver tissue markers predicts subsequent PHLF. Cholangiocarcinoma patients demonstrated pronounced systemic and hepatic oxidative stress, with increasing levels in advanced tumor stages, thus representing a worthwhile target for future exploratory and therapeutic studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA