RESUMEN
BACKGROUND: Neurobiological feedback in surgical training could translate to better educational outcomes such as measures of learning curve. This work examined the variation in brain activation of medical students when performing laparoscopic tasks before and after a training workshop, using functional near-infrared spectroscopy (fNIRS). METHODS AND PROCEDURES: This single blind randomised controlled trial examined the prefrontal cortex activity (PFCA) differences in two groups of novice medical students during the acquisition of four laparoscopic tasks. Both groups were shown a basic tutorial video, with the "Trained-group" receiving an additional standardised one-to-one training on the tasks. The PFCA was measured pre- and post-intervention using a portable fNIRS device and reported as mean total oxygenated hemoglobin (HbOµm). Primary outcome of the study is the difference in HbOµm between post- and pre-intervention readings for each of the four laparoscopic tasks. The pre- and post-intervention laparoscopic tasks were recorded and assessed by two blinded individual assessors for objective scores of the performance. RESULTS: 16 Trained and 16 Untrained, right-handed medical students with an equal sex distribution and comparable age distribution were recruited. Trained group had an attenuated left PFCA in the "Precision cutting" (p = 0.007) task compared to the Untrained group. Subgroup analysis by sex revealed attenuation in left PFCA in Trained females compared to Untrained females across two laparoscopic tasks: "Peg transfer" (p = 0.005) and "Precision cutting" (p = 0.003). No significant PFCA attenuation was found in male students who underwent training compared to Untrained males. CONCLUSION: A standardised laparoscopic training workshop promoted greater PFCA attenuation in female medical students compared to males. This suggests that female and male students respond differently to the same instructional approach. Implications include a greater focus on one-to-one surgical training for female students and use of PFCA attenuation as a form of neurobiological feedback in surgical training.