Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(4): e2318093121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232291

RESUMEN

In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.


Asunto(s)
ARN Helicasas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , ARN Helicasas/genética , ARN Helicasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Ribosomas/metabolismo
2.
Genes Dev ; 33(3-4): 180-193, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692208

RESUMEN

Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Claudina-2/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Proteínas de Microfilamentos/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Claudina-2/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Proteínas de Microfilamentos/genética , Metástasis de la Neoplasia , Dominios PDZ , Pronóstico , Análisis de Supervivencia , Células Tumorales Cultivadas
3.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37313743

RESUMEN

The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.


Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células Neoplásicas Circulantes/patología , Movimiento Celular/genética , Cadherinas , Metástasis de la Neoplasia
4.
J Biol Chem ; 295(31): 10535-10559, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32299913

RESUMEN

SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor ß (TGFß)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFß enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFß-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFß-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFß. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFß, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.


Asunto(s)
Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas con Dominio LIM/metabolismo , Podosomas/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Adhesión Celular , Línea Celular Transformada , Proteínas del Citoesqueleto/genética , Femenino , Proteínas con Dominio LIM/genética , Ratones , Paxillin/genética , Paxillin/metabolismo , Podosomas/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Factor de Crecimiento Transformador beta
5.
Breast Cancer Res ; 22(1): 7, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941526

RESUMEN

BACKGROUND: The p66ShcA redox protein is the longest isoform of the Shc1 gene and is variably expressed in breast cancers. In response to a variety of stress stimuli, p66ShcA becomes phosphorylated on serine 36, which allows it to translocate from the cytoplasm to the mitochondria where it stimulates the formation of reactive oxygen species (ROS). Conflicting studies suggest both pro- and anti-tumorigenic functions for p66ShcA, which prompted us to examine the contribution of tumor cell-intrinsic functions of p66ShcA during breast cancer metastasis. METHODS: We tested whether p66ShcA impacts the lung-metastatic ability of breast cancer cells. Breast cancer cells characteristic of the ErbB2+/luminal (NIC) or basal (4T1) subtypes were engineered to overexpress p66ShcA. In addition, lung-metastatic 4T1 variants (4T1-537) were engineered to lack endogenous p66ShcA via Crispr/Cas9 genomic editing. p66ShcA null cells were then reconstituted with wild-type p66ShcA or a mutant (S36A) that cannot translocate to the mitochondria, thereby lacking the ability to stimulate mitochondrial-dependent ROS production. These cells were tested for their ability to form spontaneous metastases from the primary site or seed and colonize the lung in experimental (tail vein) metastasis assays. These cells were further characterized with respect to their migration rates, focal adhesion dynamics, and resistance to anoikis in vitro. Finally, their ability to survive in circulation and seed the lungs of mice was assessed in vivo. RESULTS: We show that p66ShcA increases the lung-metastatic potential of breast cancer cells by augmenting their ability to navigate each stage of the metastatic cascade. A non-phosphorylatable p66ShcA-S36A mutant, which cannot translocate to the mitochondria, still potentiated breast cancer cell migration, lung colonization, and growth of secondary lung metastases. However, breast cancer cell survival in the circulation uniquely required an intact p66ShcA S36 phosphorylation site. CONCLUSION: This study provides the first evidence that both mitochondrial and non-mitochondrial p66ShcA pools collaborate in breast cancer cells to promote their maximal metastatic fitness.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias Pulmonares/secundario , Mitocondrias/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Fosforilación
6.
Am J Pathol ; 189(7): 1451-1461, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31202437

RESUMEN

Prostate cancer (PC) commonly metastasizes to the bone, resulting in pathologic fractures and poor prognosis. CCN3/nephroblastoma overexpressed is a secreted protein with a known role in promoting breast cancer metastasis to bone. However, in PC, CCN3 has been ascribed conflicting roles; some studies suggest that CCN3 promotes PC metastasis, whereas others argue a tumor suppressor role for CCN3 in this disease. Indeed, in the latter context, CCN3 has been shown to sequester the androgen receptor (AR) and suppress AR signaling. In the present study, we demonstrate that CCN3 functions as a bone-metastatic mediator, which is dependent on its C-terminal domain for this function. Analysis of tissue microarrays comprising >1500 primary PC patient radical prostatectomy specimens reveals that CCN3 expression correlates with aggressive disease and is negatively correlated with the expression of prostate-specific antigen, a marker of AR signaling. Together, these findings point to CCN3 as a biomarker to predict PC aggressiveness while providing clarity on its role as a functional mediator of PC bone metastasis.


Asunto(s)
Neoplasias Óseas/metabolismo , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Calicreínas/biosíntesis , Calicreínas/genética , Masculino , Metástasis de la Neoplasia , Proteínas de Neoplasias , Antígeno Prostático Específico/biosíntesis , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal/genética
7.
Breast Cancer Res ; 20(1): 9, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382358

RESUMEN

BACKGROUND: The Fos-related antigen 1 (FRA-1) transcription factor promotes tumor cell growth, invasion and metastasis. Phosphorylation of FRA-1 increases protein stability and function. We identify a novel signaling axis that leads to increased phosphorylation of FRA-1, increased extracellular matrix (ECM)-induced breast cancer cell invasion and is prognostic of poor outcome in patients with breast cancer. METHODS: While characterizing five breast cancer cell lines derived from primary human breast tumors, we identified BRC-31 as a novel basal-like cell model that expresses elevated FRA-1 levels. We interrogated the functional contribution of FRA-1 and an upstream signaling axis in breast cancer cell invasion. We extended this analysis to determine the prognostic significance of this signaling axis in samples derived from patients with breast cancer. RESULTS: BRC-31 cells display elevated focal adhesion kinase (FAK), SRC and extracellular signal-regulated (ERK2) phosphorylation relative to luminal breast cancer models. Inhibition of this signaling axis, with pharmacological inhibitors, reduces the phosphorylation and stabilization of FRA-1. Elevated integrin αVß3 and uPAR expression in these cells suggested that integrin receptors might activate this FAK-SRC-ERK2 signaling. Transient knockdown of urokinase/plasminogen activator urokinase receptor (uPAR) in basal-like breast cancer cells grown on vitronectin reduces FRA-1 phosphorylation and stabilization; and uPAR and FRA-1 are required for vitronectin-induced cell invasion. In clinical samples, a molecular component signature consisting of vitronectin-uPAR-uPA-FRA-1 predicts poor overall survival in patients with breast cancer and correlates with an FRA-1 transcriptional signature. CONCLUSIONS: We have identified a novel signaling axis that leads to phosphorylation and enhanced activity of FRA-1, a transcription factor that is emerging as an important modulator of breast cancer progression and metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas Proto-Oncogénicas c-fos/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Neoplasias de la Mama/patología , Matriz Extracelular/genética , Femenino , Humanos , Integrina alfaVbeta3/administración & dosificación , Integrina alfaVbeta3/genética , Células MCF-7 , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Fosforilación , Transducción de Señal/efectos de los fármacos , Vitronectina/administración & dosificación
8.
Mol Cell Proteomics ; 14(4): 1024-37, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25680959

RESUMEN

Proteins in serum or plasma hold great potential for use in disease diagnosis and monitoring. However, the correlation between tumor burden and protein biomarker concentration has not been established. Here, using an antibody colocalization microarray, the protein concentration in serum was measured and compared with the size of mammary xenograft tumors in 11 individual mice from the time of injection; seven blood samples were collected from each tumor-bearing mouse as well as control mice on a weekly basis. The profiles of 38 proteins detected in sera from these animals were analyzed by clustering, and we identified 10 proteins with the greatest relative increase in serum concentration that correlated with growth of the primary mammary tumor. To evaluate the diagnosis of cancer based on these proteins using either an absolute threshold (i.e. a concentration cutoff) or self-referenced differential threshold based on the increase in concentration before cell injection, receiver operating characteristic curves were produced for 10 proteins with increased concentration, and the area under curve was calculated for each time point based on a single protein or on a panel of proteins, in each case showing a rapid increase of the area under curve. Next, the sensitivity and specificity of individual and optimal protein panels were calculated, showing high accuracy as early as week 2. These results provide a foundation for studies of tumor growth through measuring serial changes of protein concentration in animal models.


Asunto(s)
Anticuerpos Antineoplásicos/metabolismo , Neoplasias de la Mama/metabolismo , Progresión de la Enfermedad , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Proteínas de Neoplasias/metabolismo , Análisis por Matrices de Proteínas/métodos , Animales , Biomarcadores de Tumor/metabolismo , Proteínas Sanguíneas/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Análisis por Conglomerados , Femenino , Humanos , Inmunoensayo , Ratones , Curva ROC , Reproducibilidad de los Resultados , Factores de Tiempo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Breast Cancer Res ; 17: 45, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25882816

RESUMEN

INTRODUCTION: Breast cancer cells display preferences for specific metastatic sites including the bone, lung and liver. Metastasis is a complex process that relies, in part, on interactions between disseminated cancer cells and resident/infiltrating stromal cells that constitute the metastatic microenvironment. Distinct immune infiltrates can either impair the metastatic process or conversely, assist in the seeding, colonization and growth of disseminated cancer cells. METHODS: Using in vivo selection approaches, we previously isolated 4T1-derived breast cancer cells that preferentially metastasize to these organs and tissues. In this study, we examined whether the propensity of breast cancer cells to metastasize to the lung, liver or bone is associated with and dependent on distinct patterns of immune cell infiltration. Immunohistocytochemistry and immunohistofluorescence approaches were used to quantify innate immune cell infiltrates within distinct metastases and depletion of Gr1+ (Ly-6C and Ly-6G) or specifically Ly-6G+ cells was performed to functionally interrogate the role of Ly-6G+ infiltrates in promoting metastasis to these organs. RESULTS: We show that T lymphocytes (CD3+), myeloid-derived (Gr-1+) cells and neutrophils (Ly-6G+ or NE+) exhibit the most pronounced recruitment in lung and liver metastases, with markedly less recruitment within bone metastatic lesions. Interestingly, these infiltrating cell populations display different patterns of localization within soft tissue metastases. T lymphocytes and granulocytic immune infiltrates are localized around the periphery of liver metastases whereas they were dispersed throughout the lung metastases. Furthermore, Gr-1+ cell-depletion studies demonstrate that infiltrating myeloid-derived cells are essential for the formation of breast cancer liver metastases but dispensable for metastasis to the lung and bone. A specific role for the granulocytic component of the innate immune infiltrate was revealed through Ly-6G+ cell-depletion experiments, which resulted in significantly impaired formation of liver metastases. Finally, we demonstrate that the CD11b+/Ly-6G+ neutrophils that infiltrate and surround the liver metastases are polarized toward an N2 phenotype, which have previously been shown to enhance tumor growth and metastasis. CONCLUSIONS: Our results demonstrate that the liver-metastatic potential of breast cancer cells is heavily reliant on interactions with infiltrating Ly-6G+ cells within the liver microenvironment.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Granulocitos/inmunología , Granulocitos/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Biomarcadores , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Quimiocinas/genética , Quimiocinas/metabolismo , Análisis por Conglomerados , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Granulocitos/metabolismo , Humanos , Inmunohistoquímica , Inmunofenotipificación , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Infiltración Neutrófila/inmunología , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Transcriptoma , Microambiente Tumoral/inmunología
10.
Mol Cancer Ther ; 23(10): 1459-1470, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38902871

RESUMEN

We have previously demonstrated that Claudin-2 is required for colorectal cancer (CRC) liver metastasis. The expression of Claudin-2 in primary CRC is associated with poor survival and highly expressed in liver metastases. Claudin-2 also promotes breast cancer liver metastasis by enabling seeding and cancer cell survival. These observations support Claudin-2 as a potential therapeutic target for managing patients with liver metastases. Antibody-drug conjugates (ADC) are promising antitumor therapeutics, which combine the specific targeting ability of monoclonal antibodies with the potent cell killing activity of cytotoxic drugs. Herein, we report the generation of 28 anti-Claudin-2 antibodies for which the binding specificities, cross-reactivity with claudin family members, and cross-species reactivity were assessed by flow cytometry analysis. Multiple drug conjugates were tested, and PNU was selected for conjugation with anti-Claudin-2 antibodies binding either extracellular loop 1 or 2. Anti-Claudin-2 ADCs were efficiently internalized and were effective at killing Claudin-2-expressing CRC cancer cells in vitro. Importantly, PNU-conjugated-anti-Claudin-2 ADCs impaired the development of replacement-type CRC liver metastases in vivo, using established CRC cell lines and patient-derived xenograft (PDX) models of CRC liver metastases. Results suggest that the development of ADCs targeting Claudin-2 is a promising therapeutic strategy for managing patients with CRC liver-metastatic disease who present replacement-type liver metastases.


Asunto(s)
Neoplasias Colorrectales , Inmunoconjugados , Neoplasias Hepáticas , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Claudinas/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Femenino
11.
Cancer Res ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137399

RESUMEN

The pogo transposable element derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFß pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Whereas POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade.

12.
Redox Biol ; 70: 103028, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38211442

RESUMEN

Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive strategies within cancer cell sub-populations. Such adaptations allow cancer cells to withstand these stressful microenvironments. This Darwinian model of stress adaptation often prevents durable clinical responses and influences the emergence of aggressive cancers with increased metastatic fitness. However, the mechanisms contributing to such adaptive stress responses are poorly understood. We now demonstrate that the p66ShcA redox protein, itself a ROS inducer, is essential for survival in response to physiological stressors, including anchorage independence and nutrient deprivation, in the context of poor outcome breast cancers. Mechanistically, we show that p66ShcA promotes both glucose and glutamine metabolic reprogramming in breast cancer cells, to increase their capacity to engage catabolic metabolism and support glutathione synthesis. In doing so, chronic p66ShcA exposure contributes to adaptive stress responses, providing breast cancer cells with sufficient ATP and redox balance needed to withstand such transient stressed states. Our studies demonstrate that p66ShcA functionally contributes to the maintenance of aggressive phenotypes and the emergence of metastatic disease by forcing breast tumors to adapt to chronic and moderately elevated levels of oxidative stress.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Neoplasias de la Mama/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Estrés Oxidativo/fisiología , Fenotipo , Línea Celular Tumoral , Microambiente Tumoral
13.
Neuro Oncol ; 26(6): 1052-1066, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38271182

RESUMEN

BACKGROUND: Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS: We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS: RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS: Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.


Asunto(s)
Astrocitos , Neoplasias Encefálicas , Proteína 1 Similar a Quitinasa-3 , Invasividad Neoplásica , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Humanos , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/genética , Astrocitos/metabolismo , Astrocitos/patología , Ratones , Ratones Transgénicos , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Células Tumorales Cultivadas
14.
Redox Biol ; 75: 103276, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39053265

RESUMEN

Metabolic rewiring is essential for tumor growth and progression to metastatic disease, yet little is known regarding how cancer cells modify their acquired metabolic programs in response to different metastatic microenvironments. We have previously shown that liver-metastatic breast cancer cells adopt an intrinsic metabolic program characterized by increased HIF-1α activity and dependence on glycolysis. Here, we confirm by in vivo stable isotope tracing analysis (SITA) that liver-metastatic breast cancer cells retain a glycolytic profile when grown as mammary tumors or liver metastases. However, hepatic metastases exhibit unique metabolic adaptations including elevated expression of genes involved in glutathione (GSH) biosynthesis and reactive oxygen species (ROS) detoxification when compared to mammary tumors. Accordingly, breast-cancer-liver-metastases exhibited enhanced de novo GSH synthesis. Confirming their increased capacity to mitigate ROS-mediated damage, liver metastases display reduced levels of 8-Oxo-2'-deoxyguanosine. Depletion of the catalytic subunit of the rate-limiting enzyme in glutathione biosynthesis, glutamate-cysteine ligase (GCLC), strongly reduced the capacity of breast cancer cells to form liver metastases, supporting the importance of these distinct metabolic adaptations. Loss of GCLC also affected the early steps of the metastatic cascade, leading to decreased numbers of circulating tumor cells (CTCs) and impaired metastasis to the liver and the lungs. Altogether, our results indicate that GSH metabolism could be targeted to prevent the dissemination of breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Glutamato-Cisteína Ligasa , Glutatión , Homeostasis , Neoplasias Hepáticas , Oxidación-Reducción , Especies Reactivas de Oxígeno , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Humanos , Glutatión/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/genética , Ratones , Línea Celular Tumoral , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Glucólisis , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
15.
Cell Rep ; 42(10): 113191, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37792528

RESUMEN

In solid tumors, drug concentrations decrease with distance from blood vessels. However, cellular adaptations accompanying the gradated exposure of cancer cells to drugs are largely unknown. Here, we modeled the spatiotemporal changes promoting chemotherapy resistance in breast cancer. Using pairwise cell competition assays at each step during the acquisition of chemoresistance, we reveal an important priming phase that renders cancer cells previously exposed to sublethal drug concentrations refractory to dose escalation. Therapy-resistant cells throughout the concentration gradient display higher expression of the solute carriers SLC38A7 and SLC46A1 and elevated intracellular concentrations of their associated metabolites. Reduced levels of SLC38A7 and SLC46A1 diminish the proliferative potential of cancer cells, and elevated expression of these SLCs in breast tumors from patients correlates with reduced survival. Our work provides mechanistic evidence to support dose-intensive treatment modalities for patients with solid tumors and reveals two members of the SLC family as potential actionable targets.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Animales , Humanos , Femenino , Resistencia a Antineoplásicos/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Mama/metabolismo , Transportador de Folato Acoplado a Protón
16.
Oncogene ; 41(41): 4573-4590, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050467

RESUMEN

The immune system is comprised of both innate and adaptive immune cells, which, in the context of cancer, collectively function to eliminate tumor cells. However, tumors can actively sculpt the immune landscape to favor the establishment of an immunosuppressive microenvironment, which promotes tumor growth and progression to metastatic disease. Glycoprotein-NMB (GPNMB) is a transmembrane glycoprotein that is overexpressed in a variety of cancers. It can promote primary tumor growth and metastasis, and GPNMB expression correlates with poor prognosis and shorter recurrence-free survival in patients. There is growing evidence supporting an immunosuppressive role for GPNMB in the context of malignancy. This review provides a description of the emerging roles of GPNMB as an inducer of immunosuppression, with a particular focus on its role in mediating cancer progression by restraining pro-inflammatory innate and adaptive immune responses.


Asunto(s)
Glicoproteínas de Membrana , Neoplasias , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia de Inmunosupresión , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
17.
Oncogene ; 41(12): 1701-1717, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35110681

RESUMEN

Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias de la Mama Triple Negativas , Anticuerpos Monoclonales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Inmunoconjugados/efectos adversos , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Factores de Transcripción , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
18.
Elife ; 102021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34181531

RESUMEN

Chemotherapy resistance is a critical barrier in cancer treatment. Metabolic adaptations have been shown to fuel therapy resistance; however, little is known regarding the generality of these changes and whether specific therapies elicit unique metabolic alterations. Using a combination of metabolomics, transcriptomics, and functional genomics, we show that two anthracyclines, doxorubicin and epirubicin, elicit distinct primary metabolic vulnerabilities in human breast cancer cells. Doxorubicin-resistant cells rely on glutamine to drive oxidative phosphorylation and de novo glutathione synthesis, while epirubicin-resistant cells display markedly increased bioenergetic capacity and mitochondrial ATP production. The dependence on these distinct metabolic adaptations is revealed by the increased sensitivity of doxorubicin-resistant cells and tumor xenografts to buthionine sulfoximine (BSO), a drug that interferes with glutathione synthesis, compared with epirubicin-resistant counterparts that are more sensitive to the biguanide phenformin. Overall, our work reveals that metabolic adaptations can vary with therapeutics and that these metabolic dependencies can be exploited as a targeted approach to treat chemotherapy-resistant breast cancer.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Epirrubicina/farmacología , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos NOD , Ratones SCID
19.
Neuro Oncol ; 23(9): 1470-1480, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33433612

RESUMEN

BACKGROUND: Sixty percent of surgically resected brain metastases (BrM) recur within 1 year. These recurrences have long been thought to result from the dispersion of cancer cells during surgery. We tested the alternative hypothesis that invasion of cancer cells into the adjacent brain plays a significant role in local recurrence and shortened overall survival. METHODS: We determined the invasion pattern of 164 surgically resected BrM and correlated with local recurrence and overall survival. We performed single-cell RNA sequencing (scRNAseq) of >15,000 cells from BrM and adjacent brain tissue. Validation of targets was performed with a novel cohort of BrM patient-derived xenografts (PDX) and patient tissues. RESULTS: We demonstrate that invasion of metastatic cancer cells into the adjacent brain is associated with local recurrence and shortened overall survival. scRNAseq of paired tumor and adjacent brain samples confirmed the existence of invasive cancer cells in the tumor-adjacent brain. Analysis of these cells identified cold-inducible RNA-binding protein (CIRBP) overexpression in invasive cancer cells compared to cancer cells located within the metastases. Applying PDX models that recapitulate the invasion pattern observed in patients, we show that CIRBP is overexpressed in highly invasive BrM and is required for efficient invasive growth in the brain. CONCLUSIONS: These data demonstrate peritumoral invasion as a driver of treatment failure in BrM that is functionally mediated by CIRBP. These findings improve our understanding of the biology underlying postoperative treatment failure and lay the groundwork for rational clinical trial development based upon invasion pattern in surgically resected BrM.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Humanos , Recurrencia Local de Neoplasia/genética , Proteínas de Unión al ARN/genética
20.
Commun Biol ; 4(1): 657, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079064

RESUMEN

Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that Claudin-2 is functionally required for colorectal cancer liver metastasis and that Claudin-2 expression in primary colorectal cancers is associated with poor overall and liver metastasis-free survival. We have examined the role of Claudin-2, and other claudin family members, as potential prognostic biomarkers of the desmoplastic and replacement histopathological growth pattern associated with colorectal cancer liver metastases. Immunohistochemical analysis revealed higher Claudin-2 levels in replacement type metastases when compared to those with desmoplastic features. In contrast, Claudin-8 was highly expressed in desmoplastic colorectal cancer liver metastases. Similar observations were made following immunohistochemical staining of patient-derived xenografts (PDXs) that we have established, which faithfully retain the histopathology of desmoplastic or replacement type colorectal cancer liver metastases. We provide evidence that Claudin-2 status in patient-derived extracellular vesicles may serve as a relevant prognostic biomarker to predict whether colorectal cancer patients have developed replacement type liver metastases. Such a biomarker will be a valuable tool in designing optimal treatment strategies to better manage patients with colorectal cancer liver metastases.


Asunto(s)
Biomarcadores de Tumor/fisiología , Claudinas/fisiología , Neoplasias Colorrectales/secundario , Neoplasias Hepáticas/patología , Animales , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Adhesión Celular/genética , Adhesión Celular/fisiología , Claudinas/antagonistas & inhibidores , Claudinas/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/fisiopatología , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HT29 , Hepatocitos/patología , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Neoplasias Pulmonares/secundario , Ratones , Ratones SCID , Dominios PDZ/genética , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA