Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Rev Med Virol ; 34(3): e2541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743385

RESUMEN

As the mankind counters the ongoing COVID-19 pandemic by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), it simultaneously witnesses the emergence of mpox virus (MPXV) that signals at global spread and could potentially lead to another pandemic. Although MPXV has existed for more than 50 years now with most of the human cases being reported from the endemic West and Central African regions, the disease is recently being reported in non-endemic regions too that affect more than 50 countries. Controlling the spread of MPXV is important due to its potential danger of a global spread, causing severe morbidity and mortality. The article highlights the transmission dynamics, zoonosis potential, complication and mitigation strategies for MPXV infection, and concludes with suggested 'one health' approach for better management, control and prevention. Bibliometric analyses of the data extend the understanding and provide leads on the research trends, the global spread, and the need to revamp the critical research and healthcare interventions. Globally published mpox-related literature does not align well with endemic areas/regions of occurrence which should ideally have been the scenario. Such demographic and geographic gaps between the location of the research work and the endemic epicentres of the disease need to be bridged for greater and effective translation of the research outputs to pubic healthcare systems, it is suggested.


Asunto(s)
Bibliometría , Humanos , Brotes de Enfermedades/prevención & control , Animales , Mpox/epidemiología , Mpox/transmisión , Mpox/prevención & control , Mpox/virología , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , SARS-CoV-2 , Zoonosis/epidemiología , Zoonosis/virología , Zoonosis/transmisión , Zoonosis/prevención & control , Pandemias/prevención & control
2.
Microb Pathog ; 193: 106787, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992510

RESUMEN

A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.


Asunto(s)
Agrobacterium tumefaciens , Antibacterianos , Metronidazol , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Percepción de Quorum , Agrobacterium tumefaciens/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Metronidazol/farmacología , Metronidazol/química , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Geles/química , Sinergismo Farmacológico , Liberación de Fármacos
3.
Chemistry ; 30(6): e202303300, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37929771

RESUMEN

Owing to their high reactivity and selectivity, variations in the spin ground state and a range of possible pathways, high-valent FeIV =O species are popular models with potential bioinspired applications. An interesting example of a structure-reactivity pattern is the detailed study with five nonheme amine-pyridine pentadentate ligand FeIV =O species, including N4py: [(L1 )FeIV =O]2+ (1), bntpen: [(L2 )FeIV =O]2+ (2), py2 tacn: [(L3 )FeIV =O]2+ (3), and two isomeric bispidine derivatives: [(L4 )FeIV =O]2+ (4) and [(L5 )FeIV =O]2+ (5). In this set, the order of increasing reactivity in the hydroxylation of cyclohexane differs from that with cyclohexadiene as substrate. A comprehensive DFT, ab initio CASSCF/NEVPT2 and DLPNO-CCSD(T) study is presented to untangle the observed patterns. These are well reproduced when both activation barriers for the C-H abstraction and the OH rebound are taken into account. An MO, NBO and deformation energy analysis reveals the importance of π(pyr) → π*xz (FeIII -OH) electron donation for weakening the FeIII -OH bond and thus reducing the rebound barrier. This requires that pyridine rings are oriented perpendicularly to the FeIII -OH bond and this is a subtle but crucial point in ligand design for non-heme iron alkane hydroxylation.

4.
Biomacromolecules ; 25(2): 975-989, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38189243

RESUMEN

Low-molecular-mass gelators, due to their excellent biocompatibility, low toxicological profile, innate biodegradability and ease of fabrication have garnered significant interest as they self-assemble through non-covalent interactions. In this study, we have designed and synthesized a series of six α-amidoamides by varying the hydrophobic alkyl chain length (C12-C22), which were well characterized using different spectral techniques. These α-amidoamides formed self-assembled aggregates in a DMSO/water solvent system affording organo/hydrogels at 0.66% w/v, which is the minimum gelation concentration (MGC) making them as remarkable supergelators. The various functionalities present in these gelators such as amides and alkyl chain length pave the way toward excellent gelation mechanism through hydrogen bonding and van der Waals interaction as evidenced from FTIR spectroscopy. Notably, as the chain length increased, organo/hydrogels became more thermally stable. Rheological results showed that the stability and strength of these gelators were considerably impacted by variations in chain length. The SEM morphology revealed dense sheet architectures of the organo/hydrogel samples. Organo/hydrogels have a significant impact on the advancement of innovative drug delivery systems that respond to various stimuli, ushering in a new era in pharmaceutical technology. Inspired by this, we encapsulated curcumin, a chemopreventive medication, into the gel core and further released via gel-to-sol transition induced by pH variation at 37 °C, without any alteration in structure-activity relationship. The drug release behavior was observed by UV-vis spectroscopy. Moreover, cell viability and cell invasion experiments demonstrate that the gel formulations exhibit high biocompatibility and low cytotoxicity. Among the tested formulations, 5e+Cur exhibited remarkable efficacy in controlling A549 cell migration, suggesting significant potential for applications in the pharmaceutical industry.


Asunto(s)
Curcumina , Hidrogeles , Hidrogeles/química , Curcumina/farmacología , Curcumina/química , Sistemas de Liberación de Medicamentos/métodos , Solventes/química , Concentración de Iones de Hidrógeno
5.
Inorg Chem ; 63(1): 329-345, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38150352

RESUMEN

Herein, metal-organic framework (MOF)-based adsorbents are designed with distinct hard and soft metal building units, namely, [Co2ICoII(PD)2(BP)] (Co_PD-BP) and [Cu2ICuII(PD)2(BP)] (Cu_PD-BP), where H2PD = pyrazine-1,4-diide-2,3-dicarboxylic acid and BP = 4,4'-bipyridine. The designed MOFs were characterized via spectral and SCXRD techniques, which confirm the mixed-valent states (+1 and +2) of the metal ions. Topological analysis revealed the rare ths and gwg topologies for Co MOF, while Cu-MOF exhibits a unique 8T21 topology in the 8-c net (point symbol for net: {424·64}). Moreover, severe environmental issues can be resolved by effectively removing heterocyclic organosulfur compounds from fuels via adsorptive desulfurization. Further, the developed MOFs were investigated for sulfur removal via adsorptive desulfurization from a model fuel consisting of dibenzothiophene (DBT), benzothiophene (BT), and thiophene (T) in the liquid phase using n-octane as a solvent. The findings revealed that Cu_PD-BP effectively removes the DBT with a removal efficiency of 86% at 300 ppm and an operating temperature of 25 °C, with a recyclability of up to four cycles. The adsorption kinetic analysis showed that the pseudo-first-order model could fit better with the experimental data indicating the physisorption process. Further, the studies revealed that adsorption capacity increased with the increasing initial DBT concentration with a remarkable capacity of 70.5 mg/g, and the adsorption process was well described by the Langmuir isotherm. The plausible reason behind the enhanced removal efficiency shown by Cu_PD-BP as compared to Co_PD-BP could be the soft-soft interactions between soft sulfur and soft Cu metal centers. Interestingly, density functional theory (DFT) studies were done in order to predict the mechanism of binding of thiophenic compounds with Cu_PD-BP, which further ascertained that along with other interactions, the S···π and S···Cu interactions predominate, resulting in a high uptake of DBT as compared to others. In essence, Cu_PD-BP turns out to be a promising adsorbent in the field of fuel desulfurization for the benefit of mankind.

6.
Phys Chem Chem Phys ; 26(5): 4349-4362, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38235511

RESUMEN

High-valent metal-oxo species serve as key intermediates in the activation of inert C-H bonds. Here, we present a comprehensive DFT analysis of the parameters that have been proposed as influencing factors in modeled high-valent metal-oxo mediated C-H activation reactions. Our approach involves utilizing DFT calculations to explore the electronic structures of modeled FeIVO (species 1) and CoIVO ↔ CoIII-O˙ (species 2), scrutinizing their capacity to predict improved catalytic activity. DFT and DLPNO-CCSD(T) calculations predict that the iron-oxo species possesses a triplet as the ground state, while the cobalt-oxo has a doublet as the ground state. Furthermore, we have investigated the mechanistic pathways for the first C-H bond activation, as well as the desaturation of the alkanes. The mechanism was determined to be a two-step process, wherein the first hydrogen atom abstraction (HAA) represents the rate-limiting step, involving the proton-coupled electron transfer (PCET) process. However, we found that the second HAA step is highly exothermic for both species. Our calculations suggest that the iron-oxo species (Fe-O = 1.672 Å) exhibit relatively sluggish behavior compared to the cobalt-oxo species (Co-O = 1.854 Å) in C-H bond activation, attributed to a weak metal-oxygen bond. MO, NBO, and deformation energy analysis reveal the importance of weakening the M-O bond in the cobalt species, thereby reducing the overall barrier to the reaction. This catalyst was found to have a C-H activation barrier relatively smaller than that previously reported in the literature.

7.
Chem Biodivers ; 21(4): e202301612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332679

RESUMEN

Heterocyclic compounds containing 1,2,3-triazole and isatin as core structures have emerged as promising drug candidates due to their diverse biological activities such as anti-cancer, antifungal, antimicrobial, antitumor, anti-epileptic, antiviral, and more. The presence of 1,2,3-triazoles and isatin heterocycles in these hybrids, both individually known for their medicinal significance, has increasingly piqued the interest of drug discovery researchers, as they seek to delve deeper into their extensive pharmacological potential for enhancing therapeutic efficacy. Moreover, these hybrid compounds are synthetically accessible using readily available materials. Therefore, there is a pressing need to provide a comprehensive overview of the existing knowledge in this field, offering valuable insights to readers and paving the way for the discovery of novel 1,2,3-triazole-linked isatin hybrids with therapeutic potential.


Asunto(s)
Antiinfecciosos , Isatina , Neoplasias , Humanos , Triazoles/farmacología , Triazoles/química , Relación Estructura-Actividad , Isatina/farmacología , Isatina/química , Antiinfecciosos/farmacología
8.
Chem Biodivers ; 21(7): e202400105, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700110

RESUMEN

The traditional delivery of metronidazole and theophylline presents challenges like bitter taste, variable absorption, and side effects. However, gel-based systems offer advantages including enhanced targeted drug delivery, minimized side effects, and improved patient compliance, effectively addressing these challenges. Consequently, a cost-effective synthesis of N-hydroxyalkanamide gelators with varying alkyl chain lengths was achieved in a single-step reaction procedure. These gelators formed self-assembled aggregates in DMSO/water solvent system, resulting in organo/hydrogels at a minimum gelation concentration of 1.5 % w/v. Subsequently, metronidazole and theophylline were encapsulated within the gel core and released through gel-to-sol transition triggered by pH variation at 37 °C, while maintaining the structural-activity relationship. UV-vis spectroscopy was employed to observe the drug release behavior. Furthermore, in vitro cytotoxicity assays revealed cytotoxic effects against A549 lung adenocarcinoma cells, indicating anti-proliferative activity against human lung cancer cells. Specifically, the gel containing theophylline (16HAD+Th) exhibited cytotoxicity on cancerous A549 cells with IC50 values of 19.23±0.6 µg/mL, followed by the gel containing metronidazole (16HAD+Mz) with IC50 values of 23.75±0.7 µg/mL. Moreover, the system demonstrated comparable antibacterial activity against both gram-negative (E. coli) and gram-positive bacteria (S. aureus).


Asunto(s)
Liberación de Fármacos , Hidrogeles , Metronidazol , Pruebas de Sensibilidad Microbiana , Teofilina , Teofilina/química , Teofilina/farmacología , Metronidazol/química , Metronidazol/farmacología , Humanos , Concentración de Iones de Hidrógeno , Hidrogeles/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Células A549 , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Supervivencia Celular/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Dosis-Respuesta a Droga
9.
Inorg Chem ; 62(37): 14931-14941, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37650771

RESUMEN

Activation of C-H bonds using an earth-abundant metal catalyst is one of the top challenges of chemistry, where high-valent Mn/Fe-oxo(hydroxo) biomimic species play an important role. There are several open questions related to the comparative oxidative abilities of these species, and a unifying concept that could accommodate various factors influencing reactivity is lacking. To shed light on these open questions, here, we have used a combination of density functional theory (DFT) (B3LYP-D3/def2-TZVP) and ab initio (CASSCF/NEVPT2) calculations to study a series of high-valent metal-oxo species [Mn+H3buea(O/OH)] (M = Mn and Fe, n = II to V; H3buea = tris[(N'-tert-butylureaylato)-N-ethylene)]aminato towards the activation of dihydroanthracene (DHA). The H-bonding network in the ligand architecture influences the ground state-excited state gap and brings several excited states of the same spin multiplicity closer in energy, which triggers reactivity via one of those excited states, reducing the kinetic barriers for the C-H bond activation and rationalizing several puzzling reactivity trends observed in various high-valent Mn/Fe-oxo(hydroxo) species.

10.
Bioorg Chem ; 95: 103561, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935603

RESUMEN

The present work describes coordination chemistry and biological evaluation of two novel dinuclear complexes [Co2(HL1)2(H2O)2]·8H2O (1) and [Cu2(L2)2] (2) obtained from the Schiff base ligands, H3L1 and H2L2 (formed in situ). The two complexes are characterized by single crystal X-ray, spectral and variable temperature magnetic and theoretical (DFT/TDDFT) analysis. X-ray analysis confirms both the complexes to be dinuclear with distorted octahedral and square pyramidal geometry around Co(II) and Cu(II) ions, respectively. Magnetic studies reveal presence of moderate ferromagnetic interactions in both the complexes with J = 98 (1) and 32 (2) cm-1. The magnetic interactions are further corroborated by DFT studies. Co(II) complex (1) exhibited enhanced catecholase activity with Kcat = 213.48 h-1, which is attributed to the greater extent of charge contribution on Co2+ as compared to Cu2+ as determined by DFT calculations. Furthermore, both the complexes show potent anticancer activity toward HeLa (cervical) and A549 (lung) cancer cell lines with IC50 = 6-7 µM at 48 h, which ascertains both the complexes as better anticancer drugs than cisplatin. Furthermore, 1 and 2 exhibit apoptosis of HeLa cells by demonstrating nuclear blebbings with shrinking morphology. Hence, the present complexes could be employed as a model for metalloenzymes as well as potential anticancer substituents of cisplatin in future course.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Catecol Oxidasa/metabolismo , Cobalto/química , Complejos de Coordinación/farmacología , Cobre/química , Imitación Molecular , Bases de Schiff/química , Línea Celular Tumoral , Complejos de Coordinación/química , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Humanos , Estructura Molecular , Análisis Espectral/métodos
11.
Chemistry ; 24(26): 6818-6827, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29504691

RESUMEN

High-valent iron-oxo species are known for their very high reactivity, and this aspect has been studied in detail over the years. The role of axial ligands in fine-tuning the reactivity of the iron(IV)-oxo species has been particularly well studied. The corresponding role of equatorial ligands, however, has rarely been explored, and is of prime importance in the development of non-heme chemistry. Here, we have undertaken detailed DFT calculations on [(LNHC )FeIV (O)(CH3 CN)]2+ (1; LNHC =3,9,14,20-tetraaza1,6,12,17-tetraazoniapenta-cyclohexacosane-1(23),4,6(26),10,12(25),15,17(24),21-octaene) in comparison to compound II of cytochrome P450 [(porphyrin)FeIV (O)(SH)]- (2) to probe this aspect. The electronic structures of 1 and 2 are found to vary significantly, implying a large variation in their reactivities. In particular, the strong equatorial ligand present in 1 significantly destabilizes the quintet states as compared to species 2. To fully understand the reactivity pattern of these species, we have modelled the hydroxylation of methane by both 1 and 2. Our calculations reveal that 1 reacts via a low-lying S=1 π pathway, and that the generally available S=2 σ pathway is not energetically accessible. In addition to having a significant barrier for C-H bond activation, the -OH rebound step is also computed to have a large barrier height, leading to a marked difference in reactivity between these two species. Of particular relevance here is the observation of pure triplet-state reactivity for 1. We have also attempted to test the role of axial ligands in fine-tuning the reactivity of 1, and our results demonstrate that, in contrast to heme systems, the axial ligands in 1 do not significantly influence the reactivity. This highlights the importance of designing equatorial ligands to fine-tune reactivity of high-valent iron(IV)-oxo species.

12.
Chemistry ; 23(42): 10110-10125, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28498623

RESUMEN

Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (µ-oxo)bis(µ-carboxamido)diiron(IV) ([FeIV2 O(L)2 ]2+ L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear FeIV =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {FeIII -µ(O)-FeIII }+2 (complex I), {FeIII -µ(O)-FeIV }+3 (II), and {FeIV -µ(O)-FeIV }+4 (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual FeIV centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual FeIV centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the desired spin states based on the nature of the substrate to effect the catalytic transformations. These findings suggest that the presence of such factors play a role in the reactivity of dinuclear metalloenzymes such as sMMO.

13.
Inorg Chem ; 54(23): 11077-82, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26588098

RESUMEN

In this work, we report the first computational investigation on the structure and properties of the (peroxo)diiron(III) intermediate of the AurF enzyme. Our calculations predict that, in the oxidized state of the AurF enzyme, the peroxo ligand is depicted in a µ-1,1-coordination mode with a protonated bridging ligand and is not in a µ-η(2):η(2) or µ-1,2 mode. Computed spectral data for the µ-1,1-coordination mode correlate well with experimental observations and unravel the potential of the energetics-spectroscopic approach adapted here.


Asunto(s)
Compuestos Férricos/química , Oxigenasas de Función Mixta/química , Dominio Catalítico , Ácido Glutámico/química , Histidina/química , Modelos Moleculares , Estructura Molecular , Oxígeno/química , Peróxidos/química , Protones , Teoría Cuántica , Streptomyces
14.
Angew Chem Int Ed Engl ; 54(2): 564-8, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25418430

RESUMEN

Metal-superoxo species are ubiquitous in metalloenzymes and bioinorganic chemistry and are known for their high reactivity and their ability to activate inert C-H bonds. The comparative oxidative abilities of M-O2(.-) species (M = Cr(III), Mn(III), Fe(III), and Cu(II)) towards C-H bond activation reaction are presented. These superoxo species generated by oxygen activation are found to be aggressive oxidants compared to their high-valent metal-oxo counterparts generated by O⋅⋅⋅O bond cleavage. Our calculations illustrate the superior oxidative abilities of Fe(III)- and Mn(III)-superoxo species compared to the others and suggest that the reactivity may be correlated to the magnetic exchange parameter.


Asunto(s)
Carbono/química , Hidrógeno/química , Metales/química , Superóxidos/química
15.
Phys Chem Chem Phys ; 16(28): 14601-13, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24812659

RESUMEN

There is a growing interest in probing the mechanism of catalytic transformations effected by non-heme iron-oxo complexes as these reactions set a platform for understanding the relevant enzymatic reactions. The ortho-hydroxylation of aromatic compounds is one such reaction catalysed by iron-oxo complexes. Experimentally [Fe(II)(BPMEN)(CH3CN)2](2+) (1) and [Fe(II)(TPA)(CH3CN)2](2+) (2) (where TPA = tris(2-pyridylmethyl)amine and BPMEN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine) complexes containing amino pyridine ligands along with H2O2 are employed to carry out these transformations where complex 1 is found to be more reactive than complex 2. Herein, using density functional methods employing B3LYP and dispersion corrected B3LYP (B3LYP-D) functionals, we have explored the mechanism of this reaction to reason out the importance of ligand design in fine-tuning the reactivity of such catalytic transformations. Dispersion corrected B3LYP is found to be superior to B3LYP in predicting the correct ground state of these species and also yields lower barrier heights than the B3LYP functional. Starting the reaction from the Fe(III)­OOH species, both homolytic and heterolytic cleavage of the O···O bond is explored leading to the formation of the transient Fe(IV)=O and Fe(V)=O species. For both the ligand systems, heterolytic cleavage was energetically preferable and our calculations suggest that both the reactions are catalyzed by an elusive high-valent Fe(V)=O species. The Fe(V)=O species undergoes the reaction via an electrophilic attack of the benzene ring to effect the ortho-hydroxylation reaction. The reactivity pattern observed for 1 and 2 are reflected in the computed barrier heights for the ortho-hydroxylation reaction. Electronic structure analysis reveals that the difference in reactivity between the ligand architectures described in complex 1 and 2 arise due to orientation of the pyridine ring(s) parallel or perpendicular to the Fe(V)=O bond. The parallel orientation of the pyridine ring is found to mix with the (πFe(dyz)­O(py))* orbital of the Fe-oxo bond leading to a reduction in the electrophilicity of the ferryl oxygen atom. Our calculations highlight the importance of ligand design in this chemistry and suggest that this concept can be used to (i) stabilize high-valent intermediates which can be trapped and thoroughly characterized (ii) enhance the reactivity and efficiency of the oxidants by increasing the electrophilicity of the ferryl oxygen containing FeVO species. Our computed results are in general agreement with the experimental results.


Asunto(s)
Aminoácidos Aromáticos/química , Compuestos Ferrosos/química , Hierro/química , Oxígeno/química , Catálisis , Peróxido de Hidrógeno/química , Hidroxilación , Ligandos , Conformación Molecular , Teoría Cuántica
16.
J Mol Model ; 30(5): 122, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570356

RESUMEN

CONTEXT: In this study, we have investigated the structure, reactivity, bonding, and electronic transitions of DPA and PDTC along with their Ni-Zn complexes using DFT/TD-DFT methods. The energy gap between the frontier orbitals was computed to understand the reactivity pattern of the ligands and metal complexes. From the energies of FMO's, the global reactivity descriptors such as electron affinity, ionization potential, hardness (η), softness (S), chemical potential (µ), electronegativity (χ), and electrophilicity index (ω) have been calculated. The complexes show a strong NLO properties due to easily polarization as indicated by the narrow HOMO-LUMO gap. The polarizability and hyperpolarizabilities of the complexes indicate that they are good candidates for NLO materials. Molecular electrostatic potential (MEP) maps identified electrophilic and nucleophilic sites on the surfaces of the complexes. TDDFT and NBO analyses provided insights into electronic transitions, bonding, and stabilizing interactions within the studied complexes. DPA and PDTC exhibited larger HOMO-LUMO gaps and more negative electrostatic potentials compared to their metal complexes suggesting the higher reactivity. Ligands (DPA and PDTC) had absorption spectra in the range of 250 nm to 285 nm while their complexes spanned 250 nm to 870 nm. These bands offer valuable information on electronic transitions, charge transfer and optical behavior. This work enhances our understanding of the electronic structure and optical properties of these complexes. METHODS: Gaussian16 program was used for the optimization of all the compounds. B3LYP functional in combination with basis sets, such as LanL2DZ for Zn, Ni and Cu while 6-311G** for other atoms like C, H, O, N, and S was used. Natural bond orbital (NBO) analysis is carried out to find out how the filled orbital of one sub-system interacts with the empty orbital of another sub-system. The ORCA software is used for computing spectral features along with the zeroth order regular approximation method (ZORA) to observe its relativistic effects. TD-DFT study is carried out to calculate the excitation energy by using B3LYP functional.

17.
J Am Chem Soc ; 135(11): 4235-49, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23373840

RESUMEN

ortho-Hydroxylation of aromatic compounds by non-heme Fe complexes has been extensively studied in recent years by several research groups. The nature of the proposed oxidant varies from Fe(III)-OOH to high-valent Fe(IV)═O and Fe(V)═O species, and no definitive consensus has emerged. In this comprehensive study, we have investigated the ortho-hydroxylation of aromatic compounds by an iron complex using hybrid density functional theory incorporating dispersion effects. Three different oxidants, Fe(III)-OOH, Fe(IV)═O, and Fe(V)═O, and two different pathways, H-abstraction and electrophilic attack, have been considered to test the oxidative ability of different oxidants and to underpin the exact mechanism of this regiospecific reaction. By mapping the potential energy surface of each oxidant, our calculations categorize Fe(III)-OOH as a sluggish oxidant, as both proximal and distal oxygen atoms of this species have prohibitively high barriers to carry out the aromatic hydroxylation. This is in agreement to the experimental observation where Fe(III)-OOH is found not to directly attack the aromatic ring. A novel mechanism for the explicit generation of non-heme Fe(IV)═O and Fe(V)═O from isomeric forms of Fe(III)-OOH has been proposed where the O···O bond is found to cleave via homolytic (Fe(IV)═O) or heterolytic (Fe(V)═O) fashion exclusively. Apart from having favorable formation energies, the Fe(V)═O species also has a lower barrier height compared to the corresponding Fe(IV)═O species for the aromatic ortho-hydroxylation reaction. The transient Fe(V)═O prefers electrophilic attack on the benzene ring rather than the usual aromatic C-H activation step. A large thermodynamic drive for the formation of a radical intermediate is encountered in the mechanistic scene, and this intermediate substantially diminishes the energy barrier required for C-H activation by the Fe(V)═O species. Further spin density distribution and the frontier orbitals of the computed species suggest that the Fe(IV)═O species has a substantial barrier height for this reaction, as the substrate is coordinated to the metal atoms. This coordination restricts the C-H activation step by Fe(IV)═O species to proceed via the π-type pathway, and thus the usual energy lowering due to the low-lying quintet state is not observed here.


Asunto(s)
Compuestos de Hierro/química , Oxidantes/química , Peróxidos/química , Compuestos Férricos/química , Hidroxilación , Modelos Moleculares , Oxidación-Reducción , Termodinámica
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121774, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36081194

RESUMEN

In the realm of dye sensitized solar cells (DSSCs), the 3d transition metals as photosensitizers are scarcely studied. In the present work, electronic structures, FMO, MEP surfaces, NBO analysis, energetics and photophysical properties of earth abundant metals (Mn, Fe and Co) based metalloporphyrins coordinated with NHC-carbene have been explored by using DFT and TDDFT calculations. According to formation energies and energy decomposition analysis (EDA), the cobalt based metalloporphyrins species are found to be more stable while in contrast manganese based species are predicted as more reactive among all. Also, from the ligation point of view, the TPP (meso-tetraphenylporphyrin) ligand forms more steady and rigid coordination as compare to the TTP (meso-tetratolylporphyrin) ligand. FMO analysis also support these observations. NBO and SNO results support the electronic configurations as well as unveil the controversial bonding pattern of NHCcarbon and metal atom and found that there is σ-bonding present between the metal and the NHCcarbon by the overlapping of sp-hybridized orbitals of carbenecarbon and sp/d hybrid orbital of the metal atom. TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied species is found under the range of 360 nm - 380 nm (λ) and this may due to the presence of longer π-conjugations. In-depth investigation of this work may help to design new robust energy harvesting systems for high energy conversion efficiency based on earth abundance metals. Our results are in well agreement with the available experimental findings.


Asunto(s)
Metaloporfirinas , Porfirinas , Carbono , Cobalto , Electrónica , Ligandos , Manganeso , Metaloporfirinas/química , Metales , Metano/análogos & derivados , Modelos Teóricos , Fármacos Fotosensibilizantes , Porfirinas/química
19.
Dalton Trans ; 52(39): 14160-14169, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37750348

RESUMEN

Terminal metal-oxo species of the early transition metal series are well known, whereas those for the late transition series are rare, and this is related to the "Oxo Wall". Here, we have undertaken a theoretical study on the formation of metal-oxo species from the metal hydroperoxo species of the 3d series (Cr, Mn, Fe, Co, Ni, and Cu) with the ligand 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) via O⋯O bond cleavage. DFT calculations reveal that the barrier for O⋯O bond cleavage is higher with the late transition metals (Co, Ni, and Cu) than the early transition metals (Cr, Mn, and Fe), and the formed late metal-oxo species are also thermodynamically less stable. The higher barrier may be due to electronic repulsion because of the pairing of d electrons. In the late transition metal series, the electron goes into an antibonding orbital, which decreases the bond order and hence decreases the possibility of metal-oxo formation. Computed structural parameters and spin densities suggest that valence tautomerism occurs in the late transition metal-oxo species which remain as a metal-oxyl. Our findings support the concept of the "Oxo Wall".

20.
J Mol Model ; 29(11): 358, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37919553

RESUMEN

CONTEXT: Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440-448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data. METHODS: All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA