Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(8): 3512-3523, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532798

RESUMEN

Sensitive developmental periods shape neural circuits and enable adaptation. However, they also engender vulnerability to factors that can perturb developmental trajectories. An understanding of sensitive period phenomena and mechanisms separate from sensory system development is still lacking, yet critical to understanding disease etiology and risk. The dopamine system is pivotal in controlling and shaping adolescent behaviors, and it undergoes heightened plasticity during that time, such that interference with dopamine signaling can have long-lasting behavioral consequences. Here we sought to gain mechanistic insight into this dopamine-sensitive period and its impact on behavior. In mice, dopamine transporter (DAT) blockade from postnatal (P) day 22 to 41 increases aggression and sensitivity to amphetamine (AMPH) behavioral stimulation in adulthood. Here, we refined this sensitive window to P32-41 and identified increased firing of dopaminergic neurons in vitro and in vivo as a neural correlate to altered adult behavior. Aggression can result from enhanced impulsivity and cognitive dysfunction, and dopamine regulates working memory and motivated behavior. Hence, we assessed these behavioral domains and found that P32-41 DAT blockade increases impulsivity but has no effect on cognition, working memory, or motivation in adulthood. Lastly, using optogenetics to drive dopamine neurons, we find that increased VTA but not SNc dopaminergic activity mimics the increase in impulsive behavior in the Go/NoGo task observed after adolescent DAT blockade. Together our data provide insight into the developmental origins of aggression and impulsivity that may ultimately improve diagnosis, prevention, and treatment strategies for related neuropsychiatric disorders.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Ratones , Animales , Anfetamina/farmacología , Conducta Impulsiva/fisiología , Agresión
2.
Mol Psychiatry ; 26(9): 4795-4812, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32398719

RESUMEN

Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.


Asunto(s)
Ácido Glutámico , Área Tegmental Ventral , Animales , Neuronas Dopaminérgicas , Femenino , Ratones , Ratones Noqueados , Embarazo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
3.
Mol Psychiatry ; 25(12): 3304-3321, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-30120415

RESUMEN

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.


Asunto(s)
Receptor de Serotonina 5-HT2C , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Ganglios Basales , Dopamina , Ratones , Serotonina , Sustancia Negra
4.
J Neurosci ; 34(17): 6107-11, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760870

RESUMEN

The activity of the prefrontal cortex is essential for normal emotional processing and is strongly modulated by serotonin (5-HT). Yet, little is known about the regulatory mechanisms that control the activity of the prefrontal 5-HT receptors. Here, we found and characterized a deregulation of prefrontal 5-HT receptor electrophysiological signaling in mouse models of disrupted serotonin transporter (5-HTT) function, a risk factor for emotional and cognitive disturbances. We identified a novel tyrosine kinase-dependent mechanism that regulates 5-HT-mediated inhibition of prefrontal pyramidal neurons. We report that mice with compromised 5-HTT, resulting from either genetic deletion or brief treatment with selective serotonin reuptake inhibitors during development, have amplified 5-HT1A receptor-mediated currents in adulthood. These greater inhibitory effects of 5-HT are accompanied by enhanced downstream coupling to Kir3 channels. Notably, in normal wild-type mice, we found that these larger 5-HT1A responses can be mimicked through inhibition of Src family tyrosine kinases. By comparison, in our 5-HTT mouse models, the larger 5-HT1A responses were rapidly reduced through inhibition of tyrosine phosphatases. Our findings implicate tyrosine phosphorylation in regulating the electrophysiological effects of prefrontal 5-HT1A receptors with implications for neuropsychiatric diseases associated with emotional dysfunction, such as anxiety and depressive disorders.


Asunto(s)
Conducta Animal/fisiología , Corteza Prefrontal/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Femenino , Inhibición Psicológica , Masculino , Ratones , Fosforilación/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Transmisión Sináptica/efectos de los fármacos
5.
J Neurosci ; 34(37): 12379-93, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25209278

RESUMEN

Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.


Asunto(s)
Envejecimiento/metabolismo , Ansiedad/metabolismo , Depresión/metabolismo , Extinción Psicológica , Miedo , Corteza Prefrontal/fisiopatología , Serotonina/metabolismo , Animales , Animales Recién Nacidos , Ansiedad/complicaciones , Conducta Animal , Depresión/complicaciones , Femenino , Masculino , Ratones
6.
bioRxiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37034804

RESUMEN

The medial prefrontal cortex (mPFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin project to the mPFC, and serotonergic drugs influence emotion and cognition. Yet, the specific roles of endogenous serotonin release in the mPFC on neurophysiology and behavior are unknown. We show that axonal serotonin release in the mPFC directly inhibits the major mPFC output neurons. In serotonergic neurons projecting from the dorsal raphe to the mPFC, we find endogenous activity signatures pre-reward retrieval and at reward retrieval during a cognitive flexibility task. In vivo optogenetic activation of this pathway during pre-reward retrieval selectively improved extradimensional rule shift performance while inhibition impaired it, demonstrating sufficiency and necessity for mPFC serotonin release in cognitive flexibility. Locomotor activity and anxiety-like behavior were not affected by either optogenetic manipulation. Collectively, our data reveal a powerful and specific modulatory role of endogenous serotonin release from dorsal raphe-to-mPFC projecting neurons in cognitive flexibility.

7.
J Neurosci ; 31(44): 15742-50, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049417

RESUMEN

Serotonin (5-HT)-selective reuptake inhibitors (SSRIs) are widely administered for the treatment of depression, anxiety, and other neuropsychiatric disorders, but response rates are low, and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs inhibit dopaminergic activity, but mechanistic insight remains scarce. Here we show that in mice, chronic 5-HT transporter (5-HTT) blockade during adulthood but not during development impairs basal ganglia-dependent behaviors in a dose-dependent and reversible fashion. Furthermore, chronic 5-HTT blockade reduces striatal dopamine (DA) content and metabolism. A causal relationship between reduced DA signaling and impaired basal ganglia-dependent behavior is indicated by the reversal of behavioral deficits through L-DOPA administration. Our data suggest that augmentation of DA signaling would reduce side effects and increase efficacies of SSRI-based therapy.


Asunto(s)
Ganglios Basales/efectos de los fármacos , Dopamina/metabolismo , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido 3,4-Dihidroxifenilacético/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Ganglios Basales/patología , Ganglios Basales/fisiopatología , Recuento de Células , Cromatografía Líquida de Alta Presión/métodos , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Interacciones Farmacológicas , Conducta Exploratoria/efectos de los fármacos , Fluoxetina/uso terapéutico , Ácido Homovanílico/metabolismo , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Ratones , Ratones Transgénicos , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Desempeño Psicomotor/efectos de los fármacos , Distribución Aleatoria , Prueba de Desempeño de Rotación con Aceleración Constante , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Transducción de Señal/fisiología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos
8.
Sci Rep ; 11(1): 22852, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819526

RESUMEN

Depression and anxiety, two of the most common mental health disorders, share common symptoms and treatments. Most pharmacological agents available to treat these disorders target monoamine systems. Currently, finding the most effective treatment for an individual is a process of trial and error. To better understand how disease etiology may predict treatment response, we studied mice exposed developmentally to the selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX). These mice show the murine equivalent of anxiety- and depression-like symptoms in adulthood and here we report that these mice are also behaviorally resistant to the antidepressant-like effects of adult SSRI administration. We investigated whether tianeptine (TIA), which exerts its therapeutic effects through agonism of the mu-opioid receptor instead of targeting monoaminergic systems, would be more effective in this model. We found that C57BL/6J pups exposed to FLX from postnatal day 2 to 11 (PNFLX, the mouse equivalent in terms of brain development to the human third trimester) showed increased avoidant behaviors as adults that failed to improve, or were even exacerbated, by chronic SSRI treatment. By contrast, avoidant behaviors in these same mice were drastically improved following chronic treatment with TIA. Overall, this demonstrates that TIA may be a promising alternative treatment for patients that fail to respond to typical antidepressants, especially in patients whose serotonergic system has been altered by in utero exposure to SSRIs.


Asunto(s)
Antidepresivos de Segunda Generación/toxicidad , Antidepresivos Tricíclicos/farmacología , Reacción de Prevención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Fluoxetina/toxicidad , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Tiazepinas/farmacología , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Conducta Alimentaria/efectos de los fármacos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Prueba de Campo Abierto/efectos de los fármacos
9.
Nat Commun ; 12(1): 6796, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815379

RESUMEN

Septal-hypothalamic neuronal activity centrally mediates aggressive behavior and dopamine system hyperactivity is associated with elevated aggression. However, the causal role of dopamine in aggression and its target circuit mechanisms are largely unknown. To address this knowledge gap, we studied the modulatory role of the population- and projection-specific dopamine function in a murine model of aggressive behavior. We find that terminal activity of ventral tegmental area (VTA) dopaminergic neurons selectively projecting to the lateral septum (LS) is sufficient for promoting aggression and necessary for establishing baseline aggression. Within the LS, dopamine acts on D2-receptors to inhibit GABAergic neurons, and septal D2-signaling is necessary for VTA dopaminergic activity to promote aggression. Collectively, our data reveal a powerful modulatory influence of dopaminergic synaptic input on LS function and aggression, effectively linking the clinically pertinent hyper-dopaminergic model of aggression with the classic septal-hypothalamic aggression axis.


Asunto(s)
Agresión/fisiología , Conducta Animal , Dopamina/metabolismo , Tabique del Cerebro/fisiología , Área Tegmental Ventral/fisiología , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Masculino , Ratones , Modelos Animales , Vías Nerviosas/fisiología , Receptores de Dopamina D2/metabolismo , Técnicas Estereotáxicas
10.
Nat Neurosci ; 9(6): 729-31, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16648847

RESUMEN

Environmental enrichment increases adult hippocampal neurogenesis and alters hippocampal-dependent behavior in rodents. To investigate a causal link between these two observations, we analyzed the effect of enrichment on spatial learning and anxiety-like behavior while blocking adult hippocampal neurogenesis. We report that environmental enrichment alters behavior in mice regardless of their hippocampal neurogenic capability, providing evidence that the newborn cells do not mediate these effects of enrichment.


Asunto(s)
Proliferación Celular/efectos de la radiación , Giro Dentado/fisiología , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Antidepresivos/farmacología , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Conducta Animal/efectos de la radiación , Bromodesoxiuridina , División Celular/efectos de los fármacos , División Celular/fisiología , División Celular/efectos de la radiación , Giro Dentado/efectos de los fármacos , Giro Dentado/efectos de la radiación , Ambiente Controlado , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Conducta Alimentaria/efectos de la radiación , Habituación Psicofisiológica/efectos de los fármacos , Habituación Psicofisiológica/fisiología , Habituación Psicofisiológica/efectos de la radiación , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/efectos de la radiación , Trastornos de la Memoria/fisiopatología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Células Madre/efectos de los fármacos , Células Madre/fisiología , Células Madre/efectos de la radiación , Rayos X
11.
J Clin Invest ; 130(1): 83-93, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31738186

RESUMEN

The mineralocorticoid aldosterone is produced in the adrenal zona glomerulosa (ZG) under the control of the renin-angiotensin II (AngII) system. Primary aldosteronism (PA) results from renin-independent production of aldosterone and is a common cause of hypertension. PA is caused by dysregulated localization of the enzyme aldosterone synthase (Cyp11b2), which is normally restricted to the ZG. Cyp11b2 transcription and aldosterone production are predominantly regulated by AngII activation of the Gq signaling pathway. Here, we report the generation of transgenic mice with Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) specifically in the adrenal cortex. We show that adrenal-wide ligand activation of Gq DREADD receptors triggered disorganization of adrenal functional zonation, with induction of Cyp11b2 in glucocorticoid-producing zona fasciculata cells. This result was consistent with increased renin-independent aldosterone production and hypertension. All parameters were reversible following termination of DREADD-mediated Gq signaling. These findings demonstrate that Gq signaling is sufficient for adrenocortical aldosterone production and implicate this pathway in the determination of zone-specific steroid production within the adrenal cortex. This transgenic mouse also provides an inducible and reversible model of hyperaldosteronism to investigate PA therapeutics and the mechanisms leading to the damaging effects of aldosterone on the cardiovascular system.


Asunto(s)
Corteza Suprarrenal/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Hiperaldosteronismo/etiología , Zona Glomerular/fisiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Citocromo P-450 CYP11B2/fisiología , Drogas de Diseño/farmacología , Femenino , Hiperaldosteronismo/tratamiento farmacológico , Hipertensión/etiología , Ratones , Ratones Transgénicos , Receptor Muscarínico M3/fisiología , Transducción de Señal/fisiología
12.
J Neurosci ; 28(1): 199-207, 2008 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18171937

RESUMEN

Serotonin (5-HT) acts as a neurotransmitter, but also modulates brain maturation during early development. The demonstrated influence of genetic variants on brain function, personality traits, and susceptibility to neuropsychiatric disorders suggests a critical importance of developmental mechanisms. However, little is known about how and when developmentally perturbed 5-HT signaling affects circuitry and resulting behavior. The 5-HT transporter (5-HTT) is a key regulator of extracellular 5-HT levels and we used pharmacologic strategies to manipulate 5-HTT function during development and determine behavioral consequences. Transient exposure to the 5-HTT inhibitors fluoxetine, clomipramine, and citalopram from postnatal day 4 (P4) to P21 produced abnormal emotional behaviors in adult mice. Similar treatment with the norepinephrine transporter (NET) inhibitor, desipramine, did not adversely affect adult behavior, suggesting that 5-HT and norepinephrine (NE) do not share the same effects on brain development. Shifting our period of treatment/testing to P90/P185 failed to mimic the effect of earlier exposure, demonstrating that 5-HT effects on adult behavior are developmentally specific. We have hypothesized that early-life perturbations of 5-HT signaling affect corticolimbic circuits that do not reach maturity until the peri-adolescent period. In support of this idea, we found that abnormal behaviors resulting from postnatal fluoxetine exposure have a post-pubescent onset and persist long after reaching adult age. A better understanding of the underlying 5-HT sensitive circuits and how they are perturbed should lead to new insights into how various genetic polymorphisms confer their risk to carriers. Furthermore, these studies should help determine whether in utero exposure to 5-HTT blocking drugs poses a risk for behavioral abnormalities in later life.


Asunto(s)
Emociones , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/fisiología , Norepinefrina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología , Serotonina/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Antidepresivos/metabolismo , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Emociones/efectos de los fármacos , Emociones/fisiología , Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/fisiología , Conducta Exploratoria/fisiología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Noqueados , Factores de Tiempo
13.
Curr Opin Pharmacol ; 7(1): 8-17, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17188022

RESUMEN

Depression is a common and devastating neuropsychiatric disorder, and a better understanding of its pathophysiology is needed to improve diagnosis, treatment and prevention. By considering the developmental dimensions of genetic and environmental factors, new insights have been found into the etiology and pathophysiology of depression. Specifically, we begin to understand how certain vulnerability factors affect the maturation of brain circuits involved in emotional function to increase the risk for depressive disorders later in life. These new findings might help us to better categorize and manage this complex disease.


Asunto(s)
Depresión/etiología , Trastorno Depresivo/etiología , Animales , Monoaminas Biogénicas/metabolismo , Depresión/metabolismo , Depresión/fisiopatología , Trastorno Depresivo/metabolismo , Trastorno Depresivo/fisiopatología , Humanos , Sistema Hipotálamo-Hipofisario/fisiopatología , Factores de Crecimiento Nervioso/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología
14.
ACS Chem Neurosci ; 9(5): 925-934, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29281252

RESUMEN

Ongoing efforts in our laboratories focus on design of optical reporters known as fluorescent false neurotransmitters (FFNs) that enable the visualization of uptake into, packaging within, and release from individual monoaminergic neurons and presynaptic sites in the brain. Here, we introduce the molecular probe FFN246 as an expansion of the FFN platform to the serotonergic system. Combining the acridone fluorophore with the ethylamine recognition element of serotonin, we identified FFN54 and FFN246 as substrates for both the serotonin transporter and the vesicular monoamine transporter 2 (VMAT2). A systematic structure-activity study revealed the basic structural chemotype of aminoalkyl acridones required for serotonin transporter (SERT) activity and enabled lowering the background labeling of these probes while maintaining SERT activity, which proved essential for obtaining sufficient signal in the brain tissue (FFN246). We demonstrate the utility of FFN246 for direct examination of SERT activity and SERT inhibitors in 96-well cell culture assays, as well as specific labeling of serotonergic neurons of the dorsal raphe nucleus in the living tissue of acute mouse brain slices. While we found only minor FFN246 accumulation in serotonergic axons in murine brain tissue, FFN246 effectively traces serotonin uptake and packaging in the soma of serotonergic neurons with improved photophysical properties and loading parameters compared to known serotonin-based fluorescent tracers.


Asunto(s)
Encéfalo/metabolismo , Neurotransmisores/metabolismo , Neuronas Serotoninérgicas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Animales , Axones/metabolismo , Ratones , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
15.
Neuron ; 98(5): 992-1004.e4, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29754752

RESUMEN

The efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known. Here we applied optogenetic techniques in mice to gain insight into this fundamental biological process. We find that activation of serotonergic terminals in the hippocampal CA1 region both potentiates excitatory transmission at CA3-to-CA1 synapses and enhances spatial memory. Conversely, optogenetic silencing of CA1 5-HT terminals inhibits spatial memory. We furthermore find that synaptic potentiation is mediated by 5-HT4 receptors and that systemic modulation of 5-HT4 receptor function can bidirectionally impact memory formation. Collectively, these data reveal powerful modulatory influence of serotonergic synaptic input on hippocampal function and memory formation.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Memoria Espacial/fisiología , Animales , Axones/metabolismo , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Hipocampo , Potenciación a Largo Plazo , Memoria , Ratones , Inhibición Neural/fisiología , Optogenética , Serotonina/fisiología , Transmisión Sináptica
16.
Birth Defects Res ; 109(12): 924-932, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28714607

RESUMEN

Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system (CNS) development, such sensitive periods shape the formation of neuro-circuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint, as well as the environmental context. While allowing for adaptation, such sensitive periods are also windows of vulnerability during which external and internal factors can confer risk to brain disorders by derailing adaptive developmental programs. Our group has been particularly interested in developmental periods that are sensitive to serotonin (5-HT) signaling, and impact behavior and cognition relevant to psychiatry. Specifically, we review a 5-HT-sensitive period that impacts fronto-limbic system development, resulting in cognitive, anxiety, and depression-related behaviors. We discuss preclinical data to establish biological plausibility and mechanistic insights. We also summarize epidemiological findings that underscore the potential public health implications resulting from the current practice of prescribing 5-HT reuptake inhibiting antidepressants during pregnancy. These medications enter the fetal circulation, likely perturb 5-HT signaling in the brain, and may be affecting circuit maturation in ways that parallel our findings in the developing rodent brain. More research is needed to better disambiguate the dual effects of maternal symptoms on fetal and child development from the effects of 5-HT reuptake inhibitors on clinical outcomes in the offspring. Birth Defects Research 109:924-932, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores de Captación de Serotonina y Norepinefrina/efectos adversos , Inhibidores de Captación de Serotonina y Norepinefrina/farmacocinética , Animales , Antidepresivos/farmacología , Ansiedad/inducido químicamente , Encéfalo/embriología , Niño , Desarrollo Infantil/efectos de los fármacos , Cognición/efectos de los fármacos , Depresión/inducido químicamente , Trastorno Depresivo/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Solución de Problemas/efectos de los fármacos , Receptores de Serotonina 5-HT1 , Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
17.
Neuropsychopharmacology ; 40(1): 88-112, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25178408

RESUMEN

Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cognición/fisiología , Emociones/fisiología , Plasticidad Neuronal/fisiología , Adulto , Animales , Humanos
18.
Cell Rep ; 13(9): 1965-76, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655908

RESUMEN

Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.


Asunto(s)
Conducta Animal , Neuronas Serotoninérgicas/metabolismo , Animales , Ansiedad , Conducta Animal/efectos de los fármacos , Línea Celular , Clozapina/análogos & derivados , Clozapina/farmacología , Trastorno Depresivo/metabolismo , Trastorno Depresivo/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Serotonina/metabolismo , Natación
19.
Biol Psychiatry ; 54(10): 960-71, 2003 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-14625138

RESUMEN

BACKGROUND: As a key regulator of serotonergic activity and target of many antidepressant treatments, the serotonin transporter (SERT) represents a potential mediator of anxiety- and depression-related behaviors. Using mice lacking the SERT (SERT KO), we examined the role of SERT function in anxiety- and depression-related behaviors and serotonergic neuron function. METHODS: Serotonin transporter knockout mice were evaluated in paradigms designed to assess anxiety-, depression-, and stress-related behaviors. Dorsal raphe nucleus (DRN) function was assessed by quantitative serotonergic cell counting and extracellular electrical recording of neuronal firing properties. RESULTS: Serotonin transporter knockout mice showed an increase in latency to feed in a novel situation, more immobility in a forced swim, increased escape latency in a shock escape paradigm, and decreased immobility in tail suspension. No differences in anxiety-related behaviors were seen in the open field and the elevated plus maze. Serotonin transporter knockout mice exhibit a 50% reduction in serotonergic cell number and a fourfold decrease in firing rate in the DRN. CONCLUSIONS: Developmental loss of SERT produces altered behaviors in models of depression that are generally opposite to those produced by antidepressant treatment. The reduced serotonergic cell number and firing rate in the DRN of adult SERT KO mice suggest a mechanism for these altered behaviors.


Asunto(s)
Proteínas Portadoras/metabolismo , Depresión/fisiopatología , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso , Núcleos del Rafe/fisiopatología , Potenciales de Acción , Analgesia , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Autorradiografía , Reacción de Prevención , Conducta Animal , Proteínas Portadoras/genética , Recuento de Células , Depresión/metabolismo , Relación Dosis-Respuesta en la Radiación , Electrofisiología/métodos , Electrochoque/métodos , Reacción de Fuga , Conducta Exploratoria , Conducta Alimentaria , Femenino , Suspensión Trasera , Inmunohistoquímica , Isótopos de Yodo/farmacocinética , Masculino , Maleatos/farmacocinética , Aprendizaje por Laberinto , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , Núcleos del Rafe/metabolismo , Tiempo de Reacción , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Estrés Fisiológico/metabolismo , Estrés Fisiológico/fisiopatología , Natación , Factores de Tiempo
20.
CNS Spectr ; 8(8): 572-7, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12907920

RESUMEN

Serotonin (5-HT) modulates numerous processes in the central nervous system that are relevant to neuropsychiatric function and dysfunction. It exerts significant effects on anxiety, mood, impulsivity, sleep, ingestive behavior, reward systems, and psychosis. Serotonergic dysfunction has been implicated in several psychiatric conditions but efforts to more clearly understand the mechanisms of this influence have been hampered by the complexity of this system at the receptor level. There are at least 14 distinct receptors that mediate the effects of 5-HT as well as several enzymes that control its synthesis and metabolism. Pharmacologic agents that target specific receptors have provided clues regarding the function of these receptors in the human brain. 5-HT is also an important modulator of neural development and several groups have employed a genetic strategy relevant to behavior. Several inactivation mutations of specific 5-HT receptors have been generated producing interesting behavioral phenotypes related to anxiety, depression, drug abuse, psychosis, and cognition. In many cases, knockout mice have been used to confirm what has already been suspected based on pharmacologic studies. In other instances, mutations have demonstrated new functions of serotonergic genes in development and behavior.


Asunto(s)
Encéfalo/fisiopatología , Trastornos Mentales/genética , Ratones Noqueados/genética , Receptores de Serotonina/genética , Serotonina/fisiología , Factores de Edad , Animales , Conducta Animal/fisiología , Humanos , Trastornos Mentales/fisiopatología , Ratones , Monoaminooxidasa/genética , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA