Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Glob Antimicrob Resist ; 30: 480-484, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35961584

RESUMEN

OBJECTIVES: The emergence and spread of carbapenem resistant clones is of major concern for global health. This study aimed to characterize the first detected Klebsiella pneumoniae ST15 harboring the epidemic carbapenemase OXA-48 in South America. METHODS: During a routine colonization screening with carbapenem-resistant bacteria, one K. pneumoniae strain (CGHM01) was isolated from the urine of a hospitalized patient suffering from a neurodegenerative disease in Uruguay. We used long-read whole-genome sequencing and a phylogenomic approach to characterize the emergence of K. pneumoniae CGHM01. RESULTS: K. pneumoniae CGHM01 is a multi-drug resistant strain carrying an IncL/M plasmid that encodes the carbapenemase gene blaOXA-48 within the Tn1999.2 transposon. Also, it carries an IncR plasmid harboring a class I integron with an array of antibiotic resistance genes including the extended-spectrum beta-lactamase blaCTX-M-15. Two copies of blaCTX-M-15 were also inserted in different positions of the chromosome. CGHM01 belongs to a ST15 sublineage that likely originated in continental Spain around 2012. CONCLUSIONS: The asymptomatic carriage of this strain in the urinary tract warns of difficulties for detection and reporting of emerging carbapenem-resistant clones in new geographic areas where these are not endemic.


Asunto(s)
Infecciones por Klebsiella , Enfermedades Neurodegenerativas , Carbapenémicos , Humanos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
2.
Microbiome ; 10(1): 208, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36457116

RESUMEN

BACKGROUND: The microbial community composition of urban environments is primarily determined by human activity. The use of metagenomics to explore how microbial communities are shaped in a city provides a novel input that can improve decisions on public health measures, architectural design, and urban resilience. Of note, the sewage system in a city acts as a complex reservoir of bacteria, pharmaceuticals, and antimicrobial resistant (AMR) genes that can be an important source of epidemiological information. Hospital effluents are rich in patient-derived bacteria and can thus readily become a birthplace and hotspot reservoir for antibiotic resistant pathogens which are eventually incorporated into the environment. Yet, the scope to which nosocomial outbreaks impact the urban environment is still poorly understood. RESULTS: In this work, we extensively show that different urban waters from creeks, beaches, sewage spillways and collector pipes enclose discrete microbial communities that are characterized by a differential degree of contamination and admixture with human-derived bacteria. The abundance of human bacteria correlates with the abundance of AMR genes in the environment, with beta-lactamases being the top-contributing class to distinguish low vs. highly-impacted urban environments. Indeed, the abundance of beta-lactamase resistance and carbapenem resistance determinants in the urban environment significantly increased in a 1-year period. This was in line with a pronounced increase of nosocomial carbapenem-resistant infections reported during the same period that was mainly driven by an outbreak-causing, carbapenemase-producing Klebsiella pneumoniae (KPC) ST-11 strain. Genome-resolved metagenomics of urban waters before and after this outbreak, coupled with high-resolution whole-genome sequencing, confirmed the dissemination of the ST-11 strain and a novel KPC megaplasmid from the hospital to the urban environment. City-wide analysis showed that geospatial dissemination of the KPC megaplasmid in the urban environment inversely depended on the sewage system infrastructure. CONCLUSIONS: We show how urban metagenomics and outbreak genomic surveillance can be coupled to generate relevant information for infection control, antibiotic stewardship, and pathogen epidemiology. Our results highlight the need to better characterize and understand how human-derived bacteria and antimicrobial resistance disseminate in the urban environment to incorporate this information in the development of effluent treatment infrastructure and public health policies. Video Abstract.


Asunto(s)
Infección Hospitalaria , Microbiota , Humanos , Antibacterianos/farmacología , Aguas del Alcantarillado , Farmacorresistencia Bacteriana/genética , Microbiota/genética , Hospitales , Carbapenémicos
3.
Microbiologyopen ; 10(5): e1219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713606

RESUMEN

The objective of this study is to identify and analyze integrons and antibiotic resistance genes (ARGs) in samples collected from diverse sites in terrestrial Antarctica. Integrons were studied using two independent methods. One involved the construction and analysis of intI gene amplicon libraries. In addition, we sequenced 17 metagenomes of microbial mats and soil by high-throughput sequencing and analyzed these data using the IntegronFinder program. As expected, the metagenomic analysis allowed for the identification of novel predicted intI integrases and gene cassettes (GCs), which mostly encode unknown functions. However, some intI genes are similar to sequences previously identified by amplicon library analysis in soil samples collected from non-Antarctic sites. ARGs were analyzed in the metagenomes using ABRIcate with CARD database and verified if these genes could be classified as GCs by IntegronFinder. We identified 53 ARGs in 15 metagenomes, but only four were classified as GCs, one in MTG12 metagenome (Continental Antarctica), encoding an aminoglycoside-modifying enzyme (AAC(6´)acetyltransferase) and the other three in CS1 metagenome (Maritime Antarctica). One of these genes encodes a class D ß-lactamase (blaOXA-205) and the other two are located in the same contig. One is part of a gene encoding the first 76 amino acids of aminoglycoside adenyltransferase (aadA6), and the other is a qacG2 gene.


Asunto(s)
Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Integrasas/genética , Integrones/genética , Metagenoma , Regiones Antárticas , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , Filogenia , Microbiología del Suelo
4.
Microbiome ; 7(1): 35, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819245

RESUMEN

BACKGROUND: Microbial communities present in environmental waters constitute a reservoir for antibiotic-resistant pathogens that impact human health. For this reason, a diverse variety of water environments are being analyzed using metagenomics to uncover public health threats. However, the composition of these communities along the coastal environment of a whole city, where sewage and beach waters are mixed, is poorly understood. RESULTS: We shotgun-sequenced 20 coastal areas from the city of Montevideo (capital of Uruguay) including beach and sewage water samples to characterize bacterial communities and their virulence and antibiotic resistance repertories. As expected, we found that sewage and beach environments present significantly different bacterial communities. This baseline allowed us to detect a higher prevalence and a more diverse repertory of virulence and antibiotic-resistant genes in sewage samples. Many of these genes come from well-known enterobacteria and represent carbapenemases and extended-spectrum betalactamases reported in hospital infections in Montevideo. Additionally, we were able to genotype the presence of both globally disseminated pathogenic clones and emerging antibiotic-resistant bacteria in sewage waters. CONCLUSIONS: Our study represents the first in using metagenomics to jointly analyze beaches and the sewage system from an entire city, allowing us to characterize antibiotic-resistant pathogens circulating in urban waters. The data generated in this initial study represent a baseline metagenomic exploration to guide future longitudinal (time-wise) studies, whose systematic implementation will provide useful epidemiological information to improve public health surveillance.


Asunto(s)
Antibacterianos/farmacología , Bacterias/clasificación , Metagenómica/métodos , Aguas del Alcantarillado/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Proteínas Bacterianas/genética , Playas , Estudios Transversales , Farmacorresistencia Bacteriana , Humanos , Análisis de Secuencia de ADN , Uruguay , Microbiología del Agua
5.
Artículo en Inglés | MEDLINE | ID: mdl-30533746

RESUMEN

Metagenomics is providing a broad overview of bacterial functional diversity; however, culturing and biobanking are still essential for microbiology. Here, we present the Bacterial Biobank of the Urban Environment (BBUE), a sizable culture collection for long-term storage and characterization of the microbiota associated with urban environments relevant for public health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA