Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(9): 1824-1845, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116469

RESUMEN

Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.


Asunto(s)
Caquexia , Humanos , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Caquexia/patología , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Neoplasias/patología , Infecciones/complicaciones , Infecciones/patología , Insuficiencia Multiorgánica/complicaciones , Insuficiencia Multiorgánica/patología
2.
Physiol Genomics ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881429

RESUMEN

The circadian timing system and integrated stress response (ISR) systems are fundamental regulatory mechanisms that maintain body homeostasis. The central circadian pacemaker in the suprachiasmatic nucleus (SCN) governs daily rhythms through interactions with peripheral oscillators via the hypothalamus-pituitary-adrenal (HPA) axis. On the other hand, ISR signaling is pivotal for preserving cellular homeostasis in response to physiological changes. Notably, disrupted circadian rhythms are observed in cases of impaired ISR signaling. In this work, we examine the potential interplay between the central circadian system and the ISR, mainly through the SCN and HPA axis. We introduce a semi-mechanistic mathematical model to delineate the suprachiasmatic nucleus (SCN)'s capacity for indirectly perceiving physiological stress through glucocorticoid-mediated feedback from the HPA axis and orchestrating a cellular response via the ISR mechanism. Key components of our investigation include evaluating general control nonderepressible 2 (GCN2) expression in the SCN, the effect of physiological stress stimuli on the HPA axis, and the interconnected feedback between the HPA and SCN. Simulation reveals a critical role for GCN2 in linking ISR with circadian rhythms. Experimental findings have demonstrated that a Gcn2 deletion in mice leads to rapid re-entrainment of the circadian clock following jetlag, as well as to an elongation of the circadian period. These.

3.
Am J Physiol Endocrinol Metab ; 325(5): E624-E637, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792040

RESUMEN

Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose.NEW & NOTEWORTHY This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.


Asunto(s)
Actomiosina , Temperatura Corporal , Ratones , Masculino , Femenino , Animales , Actomiosina/metabolismo , Termogénesis/genética , Hígado/metabolismo , Frío , Tejido Adiposo Pardo/metabolismo , Aminoácidos/metabolismo , Ratones Endogámicos C57BL
4.
FASEB J ; 36(7): e22396, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35690926

RESUMEN

Dietary removal of an essential amino acid (EAA) triggers the integrated stress response (ISR) in liver. Herein, we explored the mechanisms that activate the ISR and execute changes in transcription and translation according to the missing EAA. Wild-type mice and mice lacking general control nonderepressible 2 (Gcn2) were fed an amino acid complete diet or a diet devoid of either leucine or sulfur amino acids (methionine and cysteine). Serum and liver leucine concentrations were significantly reduced within the first 6 h of feeding a diet lacking leucine, corresponding with modest, GCN2-dependent increases in Atf4 mRNA translation and induction of selected ISR target genes (Fgf21, Slc7a5, Slc7a11). In contrast, dietary removal of the sulfur amino acids lowered serum methionine, but not intracellular methionine, and yet hepatic mRNA abundance of Atf4, Fgf21, Slc7a5, Slc7a11 substantially increased regardless of GCN2 status. Liver tRNA charging levels did not correlate with intracellular EAA concentrations or GCN2 status and remained similar to mice fed a complete diet. Furthermore, loss of Gcn2 increased the occurrence of ribosome collisions in liver and derepressed mechanistic target of rapamycin complex 1 signal transduction, but these changes did not influence execution of the ISR. We conclude that ISR activation is directed by intracellular EAA concentrations, but ISR execution is not. Furthermore, a diet devoid of sulfur amino acids does not require GCN2 for the ISR to execute changes to the transcriptome.


Asunto(s)
Aminoácidos Sulfúricos , Aminoácidos , Aminoácidos/metabolismo , Aminoácidos Sulfúricos/metabolismo , Animales , Dieta , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina , Hígado/metabolismo , Metionina/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética
5.
Nucleic Acids Res ; 49(10): 5726-5742, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34023907

RESUMEN

Appropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Estrés Fisiológico/genética , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Codón/genética , Ontología de Genes , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Piperidinas/administración & dosificación , Piperidinas/farmacología , Polirribosomas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Inhibidores de la Síntesis de la Proteína/farmacología , Quinazolinonas/administración & dosificación , Quinazolinonas/farmacología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
6.
J Nutr ; 152(4): 926-938, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34958390

RESUMEN

Activating transcription factor 4 (ATF4) is a multifunctional transcription regulatory protein in the basic leucine zipper superfamily. ATF4 can be expressed in most if not all mammalian cell types, and it can participate in a variety of cellular responses to specific environmental stresses, intracellular derangements, or growth factors. Because ATF4 is involved in a wide range of biological processes, its roles in human health and disease are not yet fully understood. Much of our current knowledge about ATF4 comes from investigations in cultured cell models, where ATF4 was originally characterized and where further investigations continue to provide new insights. ATF4 is also an increasingly prominent topic of in vivo investigations in fully differentiated mammalian cell types, where our current understanding of ATF4 is less complete. Here, we review some important high-level concepts and questions concerning the basic biology of ATF4. We then discuss current knowledge and emerging questions about the in vivo role of ATF4 in one fully differentiated cell type, mammalian skeletal muscle fibers.


Asunto(s)
Factor de Transcripción Activador 4 , Atrofia Muscular , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Biología , Diferenciación Celular , Humanos , Mamíferos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiología
7.
J Nutr ; 151(4): 785-799, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33512502

RESUMEN

BACKGROUND: Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE: We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS: Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS: We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS: Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos Sulfúricos/deficiencia , Factor de Transcripción Activador 4/deficiencia , Factor de Transcripción Activador 4/genética , Aminoácidos Sulfúricos/sangre , Aminoácidos Sulfúricos/metabolismo , Animales , Antioxidantes/metabolismo , Composición Corporal , ADN/biosíntesis , Dietoterapia , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Sulfuro de Hidrógeno/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , Factores Sexuales , Estrés Fisiológico
8.
J Anim Physiol Anim Nutr (Berl) ; 105(1): 140-148, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32511844

RESUMEN

metabolomics is the high-throughput, multiparametric identification and classification of hundreds of low molecular weight metabolites in a biological sample. Ultimately, metabolites are the downstream readouts of cellular signalling, transcriptomic and proteomic changes that can provide a comprehensive view of tissue and organismal phenotype. The popularity of metabolomics in human sport and exercise has been gaining over the past decade and has provided important insights into the energetic demands and mechanistic underpinnings of exercise and training. To the contrary, metabolomics in the field of equine exercise physiology is lagging despite the horse's superior aerobic and muscular capabilities, as well as its prominence in competitive sport. As such, this narrative review aims to describe metabolomics, its routine implementation, the various analytical methods applied and the state of its use in the equine athlete. Sufficient attention will be paid to methodological considerations, as well as gaps in the equine literature, particularly with regard to the skeletal muscle metabolome. Finally, there will be a brief discussion of the future directions and barriers to metabolomics use in the athletic horse. A thorough understanding of the metabolomics changes that occur in the equine athlete with exercise will undoubtedly help to improve horse management and health across the lifespan.


Asunto(s)
Condicionamiento Físico Animal , Deportes , Animales , Caballos , Metaboloma , Metabolómica , Proteómica
9.
J Biol Chem ; 294(38): 13864-13875, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31413113

RESUMEN

Asparaginase is an amino acid-depleting agent used to treat blood cancers. Metabolic complications due to asparaginase affect liver function in humans. To examine how the liver response to asparaginase changes during maturity to adulthood, here we treated juvenile (2-week), young adult (8-week), and mature adult (16-week) mice with drug or excipient for 1 week and conducted RNA-Seq and functional analyses. Asparaginase reduced body growth and liver mass in juveniles but not in the adult animals. Unbiased exploration of the effect of asparaginase on the liver transcriptome revealed that the integrated stress response (ISR) was the only molecular signature shared across the ages, corroborating similar eukaryotic initiation factor 2 phosphorylation responses to asparaginase at all ages. Juvenile livers exhibited steatosis and iron accumulation following asparaginase exposure along with a hepatic gene signature indicating that asparaginase uniquely affects lipid, cholesterol, and iron metabolism in juvenile mice. In contrast, asparaginase-treated adult mice displayed greater variability in liver function, which correlated with an acute-phase inflammatory response gene signature. Asparaginase-exposed adults also had a serine/glycine/one-carbon metabolism gene signature in liver that corresponded with reduced circulating glycine and serine levels. These results establish the ISR as a conserved response to asparaginase-mediated amino acid deprivation and provide new insights into the relationship between the liver transcriptome and hepatic function upon asparaginase exposure.


Asunto(s)
Asparaginasa/efectos adversos , Asparaginasa/metabolismo , Hígado/metabolismo , Factores de Edad , Aminoácidos/metabolismo , Animales , Asparaginasa/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Hígado Graso/metabolismo , Femenino , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
10.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G518-G530, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905021

RESUMEN

Intestinal-fatty acid binding protein (IFABP; FABP2) is a 15-kDa intracellular protein abundantly present in the cytosol of the small intestinal (SI) enterocyte. High-fat (HF) feeding of IFABP-/- mice resulted in reduced weight gain and fat mass relative to wild-type (WT) mice. Here, we examined intestinal properties that may underlie the observed lean phenotype of high fat-fed IFABP-/- mice. No alterations in fecal lipid content were found, suggesting that the IFABP-/- mice are not malabsorbing dietary fat. However, the total excreted fecal mass, normalized to food intake, was increased for the IFABP-/- mice relative to WT mice. Moreover, intestinal transit time was more rapid in the IFABP-/- mice. IFABP-/- mice displayed a shortened average villus length, a thinner muscularis layer, reduced goblet cell density, and reduced Paneth cell abundance. The number of proliferating cells in the crypts of IFABP-/- mice did not differ from that of WT mice, suggesting that the blunt villi phenotype is not due to alterations in proliferation. IFABP-/- mice were observed to have altered expression of genes and proteins related to intestinal structure, while immunohistochemical analyses revealed increased staining for markers of inflammation. Taken together, these studies indicate that the ablation of IFABP, coupled with high-fat feeding, leads to changes in gut motility and morphology, which likely contribute to the relatively leaner phenotype occurring at the whole-body level. Thus, IFABP is likely involved in dietary lipid sensing and signaling, influencing intestinal motility, intestinal structure, and nutrient absorption, thereby impacting systemic energy metabolism.NEW & NOTEWORTHY Intestinal fatty acid binding protein (IFABP) is thought to be essential for the efficient uptake and trafficking of dietary fatty acids. In this study, we demonstrate that high-fat-fed IFABP-/- mice have an increased fecal output and are likely malabsorbing other nutrients in addition to lipid. Furthermore, we observe that the ablation of IFABP leads to marked alterations in intestinal morphology and secretory cell abundance.


Asunto(s)
Adiposidad , Dieta Alta en Grasa , Proteínas de Unión a Ácidos Grasos/deficiencia , Motilidad Gastrointestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Aumento de Peso , Animales , Muerte Celular , Defecación , Metabolismo Energético , Enterocitos/metabolismo , Enterocitos/patología , Proteínas de Unión a Ácidos Grasos/genética , Heces/química , Eliminación de Gen , Genotipo , Absorción Intestinal , Mucosa Intestinal/patología , Mucosa Intestinal/fisiopatología , Intestino Delgado/patología , Intestino Delgado/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Factores de Tiempo
11.
J Biol Chem ; 293(14): 5005-5015, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29449374

RESUMEN

Amino acid availability is sensed by GCN2 (general control nonderepressible 2) and mechanistic target of rapamycin complex 1 (mTORC1), but how these two sensors coordinate their respective signal transduction events remains mysterious. In this study we utilized mouse genetic models to investigate the role of GCN2 in hepatic mTORC1 regulation upon amino acid stress induced by a single injection of asparaginase. We found that deletion of Gcn2 prevented hepatic phosphorylation of eukaryotic initiation factor 2α to asparaginase and instead unleashed mTORC1 activity. This change in intracellular signaling occurred within minutes and resulted in increased 5'-terminal oligopyrimidine mRNA translation instead of activating transcription factor 4 synthesis. Asparaginase also promoted hepatic mRNA levels of several genes which function as mTORC1 inhibitors, and these genes were blunted or blocked in the absence of Gcn2, but their timing could not explain the early discordant effects in mTORC1 signaling. Preconditioning mice with a chemical endoplasmic reticulum stress agent before amino acid stress rescued normal mTORC1 repression in the liver of Gcn2-/- mice but not in livers with both Gcn2 and the endoplasmic reticulum stress kinase, Perk, deleted. Furthermore, treating wildtype and Gcn2-/- mice with ISRIB, an inhibitor of PERK signaling, also failed to alter hepatic mTORC1 responses to asparaginase, although administration of ISRIB alone had an inhibitory GCN2-independent effect on mTORC1 activity. Taken together, the data show that activating transcription factor 4 is not required, but eukaryotic initiation factor 2α phosphorylation is necessary to prevent mTORC1 activation during amino acid stress.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Aminoácidos/metabolismo , Animales , Femenino , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
12.
J Biol Chem ; 292(16): 6786-6798, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28242759

RESUMEN

Obesity increases risk for liver toxicity by the anti-leukemic agent asparaginase, but the mechanism is unknown. Asparaginase activates the integrated stress response (ISR) via sensing amino acid depletion by the eukaryotic initiation factor 2 (eIF2) kinase GCN2. The goal of this work was to discern the impact of obesity, alone versus alongside genetic disruption of the ISR, on mechanisms of liver protection during chronic asparaginase exposure in mice. Following diet-induced obesity, biochemical analysis of livers revealed that asparaginase provoked hepatic steatosis that coincided with activation of another eIF2 kinase PKR-like endoplasmic reticulum kinase (PERK), a major ISR transducer to ER stress. Genetic loss of Gcn2 intensified hepatic PERK activation to asparaginase, yet surprisingly, mRNA levels of key ISR gene targets such as Atf5 and Trib3 failed to increase. Instead, mechanistic target of rapamycin complex 1 (mTORC1) signal transduction was unleashed, and this coincided with liver dysfunction reflected by a failure to maintain hydrogen sulfide production or apolipoprotein B100 (ApoB100) expression. In contrast, obese mice lacking hepatic activating transcription factor 4 (Atf4) showed an exaggerated ISR and greater loss of endogenous hydrogen sulfide but normal inhibition of mTORC1 and maintenance of ApoB100 during asparaginase exposure. In both genetic mouse models, expression and phosphorylation of Sestrin2, an ATF4 gene target, was increased by asparaginase, suggesting mTORC1 inhibition during asparaginase exposure is not driven via eIF2-ATF4-Sestrin2. In conclusion, obesity promotes a maladaptive ISR during asparaginase exposure. GCN2 functions to repress mTORC1 activity and maintain ApoB100 protein levels independently of Atf4 expression, whereas hydrogen sulfide production is promoted via GCN2-ATF4 pathway.


Asunto(s)
Asparaginasa/metabolismo , Hígado Graso/metabolismo , Hígado/patología , Obesidad/metabolismo , Factor de Transcripción Activador 4/genética , Factores de Transcripción Activadores/metabolismo , Animales , Apolipoproteína B-100/metabolismo , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Hígado Graso/patología , Eliminación de Gen , Glutatión/química , Sulfuro de Hidrógeno/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Peroxidasas , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasas TOR/metabolismo , eIF-2 Quinasa/metabolismo
13.
J Nutr ; 147(6): 1031-1040, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28446632

RESUMEN

Background: The phosphorylation of eukaryotic initiation factor 2 (p-eIF2) during dietary amino acid insufficiency reduces protein synthesis and alters gene expression via the integrated stress response (ISR).Objective: We explored whether a Met-restricted (MR) diet activates the ISR to reduce body fat and regulate protein balance.Methods: Male and female mice aged 3-6 mo with either whole-body deletion of general control nonderepressible 2 (Gcn2) or liver-specific deletion of protein kinase R-like endoplasmic reticulum kinase (Perk) alongside wild-type or floxed control mice were fed an obesogenic diet sufficient in Met (0.86%) or an MR (0.12% Met) diet for ≤5 wk. Ala enrichment with deuterium was measured to calculate protein synthesis rates. The guanine nucleotide exchange factor activity of eIF2B was measured alongside p-eIF2 and hepatic mRNA expression levels at 2 d and 5 wk. Metabolic phenotyping was conducted at 4 wk, and body composition was measured throughout. Results were evaluated with the use of ANOVA (P < 0.05).Results: Feeding an MR diet for 2 d did not increase hepatic p-eIF2 or reduce eIF2B activity in wild-type or Gcn2-/- mice, yet many genes transcriptionally regulated by the ISR were altered in both strains in the same direction and amplitude. Feeding an MR diet for 5 wk increased p-eIF2 and reduced eIF2B activity in wild-type but not Gcn2-/- mice, yet ISR-regulated genes altered in both strains similarly. Furthermore, the MR diet reduced mixed and cytosolic but not mitochondrial protein synthesis in both the liver and skeletal muscle regardless of Gcn2 status. Despite the similarities between strains, the MR diet did not increase energy expenditure or reduce body fat in Gcn2-/- mice. Finally, feeding the MR diet to mice with Perk deleted in the liver increased hepatic p-eIF2 and altered body composition similar to floxed controls.Conclusions: Hepatic activation of the ISR resulting from an MR diet does not require p-eIF2. Gcn2 status influences body fat loss but not protein balance when Met is restricted.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta , Factor 2 Eucariótico de Iniciación/metabolismo , Hígado/metabolismo , Metionina/administración & dosificación , Biosíntesis de Proteínas , Estrés Fisiológico , Factor de Transcripción Activador 4/metabolismo , Animales , Composición Corporal , Retículo Endoplásmico , Femenino , Expresión Génica , Regulación de la Expresión Génica , Masculino , Enfermedades Metabólicas/metabolismo , Metionina/deficiencia , Metionina/farmacología , Ratones Endogámicos C57BL , Obesidad/metabolismo , Fosforilación , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , ARN Mensajero/metabolismo , eIF-2 Quinasa/metabolismo
14.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1061-70, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26968207

RESUMEN

Treatment with the antileukemic agent asparaginase can induce acute pancreatitis, but the pathophysiology remains obscure. In the liver of mice, eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2) is essential for mitigating metabolic stress caused by asparaginase. We determined the consequences of asparaginase treatment on the pancreata of wild-type (WT, GCN2-intact) and GCN2-deleted (ΔGcn2) mice. Mean pancreas weights in ΔGcn2 mice treated with asparaginase for 8 days were increased (P < 0.05) above all other groups. Histological examination revealed acinar cell swelling and altered staining of zymogen granules in ΔGcn2, but not WT, mice. Oil Red O staining and measurement of pancreas triglycerides excluded lipid accumulation as a contributor to acini appearance. Instead, transmission electron microscopy revealed dilatation of the endoplasmic reticulum (ER) and accumulation of autophagic vacuoles in the pancreas of ΔGcn2 mice treated with asparaginase. Consistent with the idea that loss of GCN2 in a pancreas exposed to asparaginase induced ER stress, phosphorylation of protein kinase R-like ER kinase (PERK) and its substrate eIF2 was increased in the pancreas of asparaginase-treated ΔGcn2 mice. In addition, mRNA expression of PERK target genes, activating transcription factors 4, 3, and 6 (Atf4, Atf3, and Atf6), fibroblast growth factor 21 (Fgf21), heat shock 70-kDa protein 5 (Hspa5), and spliced Xbp1 (sXbp1), as well as pancreas mass, was elevated in the pancreas of asparaginase-treated ΔGcn2 mice. Furthermore, genetic markers of oxidative stress [sirtuin (Sirt1)], inflammation [tumor necrosis factor-α (Tnfα)], and pancreatic injury [pancreatitis-associated protein (Pap)] were elevated in asparaginase-treated ΔGcn2, but not WT, mice. These data indicate that loss of GCN2 predisposes the exocrine pancreas to a maladaptive ER stress response and autophagy during asparaginase treatment and represent a genetic basis for development of asparaginase-associated pancreatitis.


Asunto(s)
Eliminación de Gen , Pancreatitis/genética , Proteínas Serina-Treonina Quinasas/genética , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Animales , Asparaginasa/toxicidad , Autofagia , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/citología , Páncreas/metabolismo , Pancreatitis/etiología , Pancreatitis/metabolismo , Proteínas Asociadas a Pancreatitis , Proteínas Serina-Treonina Quinasas/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 Quinasa/metabolismo
15.
Amino Acids ; 48(1): 41-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26255285

RESUMEN

Leucine (Leu) is a nutritionally essential branched-chain amino acid (BCAA) in animal nutrition. It is usually one of the most abundant amino acids in high-quality protein foods. Leu increases protein synthesis through activation of the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle, adipose tissue and placental cells. Leu promotes energy metabolism (glucose uptake, mitochondrial biogenesis, and fatty acid oxidation) to provide energy for protein synthesis, while inhibiting protein degradation. Approximately 80 % of Leu is normally used for protein synthesis, while the remainder is converted to α-ketoisocaproate (α-KIC) and ß-hydroxy-ß-methylbutyrate (HMB) in skeletal muscle. Therefore, it has been hypothesized that some of the functions of Leu are modulated by its metabolites. Both α-KIC and HMB have recently received considerable attention as nutritional supplements used to increase protein synthesis, inhibit protein degradation, and regulate energy homeostasis in a variety of in vitro and in vivo models. Leu and its metabolites hold great promise to enhance the growth and health of animals (including humans, birds and fish).


Asunto(s)
Metabolismo Energético , Leucina/metabolismo , Biosíntesis de Proteínas , Animales , Humanos , Músculo Esquelético/metabolismo , Proteínas/metabolismo
16.
Am J Physiol Endocrinol Metab ; 308(4): E283-93, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25491724

RESUMEN

The antileukemic agent asparaginase triggers the amino acid response (AAR) in the liver by activating the eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2). To explore the mechanism by which AAR induction is necessary to mitigate hepatic lipid accumulation and prevent liver dysfunction during continued asparaginase treatment, wild-type and Gcn2 null mice were injected once daily with asparaginase or phosphate buffered saline for up to 14 days. Asparaginase induced mRNA expression of multiple AAR genes and greatly increased circulating concentrations of the metabolic hormone fibroblast growth factor 21 (FGF21) independent of food intake. Loss of Gcn2 precluded mRNA expression and circulating levels of FGF21 and blocked mRNA expression of multiple genes regulating lipid synthesis and metabolism including Fas, Ppara, Pparg, Acadm, and Scd1 in both liver and white adipose tissue. Furthermore, rates of triglyceride export and protein expression of apolipoproteinB-100 were significantly reduced in the livers of Gcn2 null mice treated with asparaginase, providing a mechanistic basis for the increase in hepatic lipid content. Loss of AAR-regulated antioxidant defenses in Gcn2 null livers was signified by reduced Gpx1 gene expression alongside increased lipid peroxidation. Substantial reductions in antithrombin III hepatic expression and activity in the blood of asparaginase-treated Gcn2 null mice indicated liver dysfunction. These results suggest that the ability of the liver to adapt to prolonged asparaginase treatment is influenced by GCN2-directed regulation of FGF21 and oxidative defenses, which, when lost, corresponds with maladaptive effects on lipid metabolism and hemostasis.


Asunto(s)
Antineoplásicos/efectos adversos , Asparaginasa/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Factores de Crecimiento de Fibroblastos/agonistas , Hígado/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Triglicéridos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Antineoplásicos/administración & dosificación , Asparaginasa/administración & dosificación , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Proteínas de Escherichia coli/administración & dosificación , Proteínas de Escherichia coli/efectos adversos , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Inyecciones Intraperitoneales , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo
17.
J Biol Chem ; 288(43): 31250-60, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24019515

RESUMEN

Branched-chain amino acid (BCAA) catabolism is regulated by branched-chain α-keto acid dehydrogenase, an enzyme complex that is inhibited when phosphorylated by its kinase (BDK). Loss of BDK function in mice and humans causes BCAA deficiency and epilepsy with autistic features. In response to amino acid deficiency, phosphorylation of eukaryotic initiation factor 2α (eIF2∼P) by general control nonderepressible 2 (GCN2) activates the amino acid stress response. We hypothesized that GCN2 functions to protect the brain during chronic BCAA deficiency. To test this idea, we generated mice lacking both Gcn2 and Bdk (GBDK) and examined the development of progeny. GBDK mice appeared normal at birth, but they soon stopped growing, developed severe ataxia, tremor, and anorexia, and died by postnatal day 15. BCAA levels in brain were diminished in both Bdk(-/-) and GBDK pups. Brains from Bdk(-/-) pups exhibited robust eIF2∼P and amino acid stress response induction, whereas these responses were absent in GBDK mouse brains. Instead, myelin deficiency and diminished expression of myelin basic protein were noted in GBDK brains. Genetic markers of oligodendrocytes and astrocytes were also reduced in GBDK brains in association with apoptotic cell death in white matter regions of the brain. GBDK brains further demonstrated reduced Sod2 and Cat mRNA and increased Tnfα mRNA expression. The data are consistent with the idea that loss of GCN2 during BCAA deficiency compromises glial cell defenses to oxidative and inflammatory stress. We conclude that GCN2 protects the brain from developing a lethal leukodystrophy in response to amino acid deficiencies.


Asunto(s)
Corteza Cerebral/metabolismo , Leucoencefalopatías/enzimología , Enfermedad de la Orina de Jarabe de Arce/enzimología , Oligodendroglía/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Catalasa/biosíntesis , Catalasa/genética , Corteza Cerebral/patología , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Masculino , Enfermedad de la Orina de Jarabe de Arce/genética , Enfermedad de la Orina de Jarabe de Arce/patología , Ratones , Ratones Noqueados , Proteína Básica de Mielina/biosíntesis , Proteína Básica de Mielina/genética , Oligodendroglía/patología , Estrés Oxidativo/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
18.
bioRxiv ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38496495

RESUMEN

The activation of branched chain amino acid (BCAA) catabolism has garnered interest as a potential therapeutic approach to improve insulin sensitivity, enhance recovery from heart failure, and blunt tumor growth. Evidence for this interest relies in part on BT2, a small molecule that promotes BCAA oxidation and is protective in mouse models of these pathologies. BT2 and other analogs allosterically inhibit branched chain ketoacid dehydrogenase kinase (BCKDK) to promote BCAA oxidation, which is presumed to underlie the salutary effects of BT2. Potential "off-target" effects of BT2 have not been considered, however. We therefore tested for metabolic off-target effects of BT2 in Bckdk-/- animals. As expected, BT2 failed to activate BCAA oxidation in these animals. Surprisingly, however, BT2 strongly reduced plasma tryptophan levels and promoted catabolism of tryptophan to kynurenine in both control and Bckdk-/- mice. Mechanistic studies revealed that none of the principal tryptophan catabolic or kynurenine-producing/consuming enzymes (TDO, IDO1, IDO2, or KATs) were required for BT2-mediated lowering of plasma tryptophan. Instead, using equilibrium dialysis assays and mice lacking albumin, we show that BT2 avidly binds plasma albumin and displaces tryptophan, releasing it for catabolism. These data confirm that BT2 activates BCAA oxidation via inhibition of BCKDK but also reveal a robust off-target effect on tryptophan metabolism via displacement from serum albumin. The data highlight a potential confounding effect for pharmaceutical compounds that compete for binding with albumin-bound tryptophan.

19.
Am J Physiol Endocrinol Metab ; 305(9): E1124-33, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24002574

RESUMEN

Asparaginase is an important drug in the treatment regimen for acute lymphoblastic leukemia. Asparaginase depletes circulating asparagine and glutamine, activating an amino acid stress response (AAR) involving phosphorylation of eukaryotic initiation factor 2 (eIF2) by general control nonderepressible kinase 2 (GCN2). We hypothesized that GCN2 functions to mitigate hepatic stress during asparaginase therapy by activating the AAR. To test this idea, C57BL/6J wild-type mice (Gcn2(+/+)) and those deleted for Gcn2 (Gcn2(-/-)) were injected with asparaginase or saline excipient one time daily for 1 or 6 days. In liver, increased phosphorylation of eIF2 and mRNA expression of AAR target genes activating transcription factor 4, asparagine synthetase, eIF4E-binding protein 1, and CAAT enhancer-binding protein homologous protein were significantly blunted or blocked in the liver of Gcn2(-/-) mice. Loss of AAR during asparaginase coincided with increases in mammalian target of rapamycin signaling, hepatic triglyceride accumulation, and DNA damage in association with genetic markers of oxidative stress (glutathione peroxidase) and inflammation (tumor necrosis factor alpha-α). Although asparaginase depleted circulating asparagine in both Gcn2(+/+) and Gcn2(-/-) mice, all other amino acids, including plasma glutamine, were elevated in the plasma of Gcn2(-/-) mice. This study shows that loss of GCN2 promotes oxidative stress and inflammatory-mediated DNA damage during asparaginase therapy, suggesting that patients with reduced or dysfunctional AAR may be at risk of developing hepatic complications during asparaginase treatment.


Asunto(s)
Antineoplásicos/antagonistas & inhibidores , Antineoplásicos/toxicidad , Asparaginasa/antagonistas & inhibidores , Asparaginasa/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Proteínas Serina-Treonina Quinasas/farmacología , Aminoácidos/sangre , Animales , Antineoplásicos/uso terapéutico , Asparaginasa/uso terapéutico , Western Blotting , Peso Corporal/genética , Peso Corporal/fisiología , Daño del ADN , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Inflamación/fisiopatología , Hígado/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Tamaño de los Órganos/genética , Tamaño de los Órganos/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/fisiología , Triglicéridos/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética
20.
Am J Physiol Endocrinol Metab ; 304(11): E1175-87, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23512805

RESUMEN

Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35-50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Tejido Adiposo Blanco/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo , Adulto , Animales , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Insulina/sangre , Ratones , Ratones Obesos , Persona de Mediana Edad , Ratas , Ratas Zucker
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA