Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Biochem ; 359(1-2): 169-76, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21842376

RESUMEN

Hemorrhage (H) is associated with a left ventricular (LV) dysfunction. However, the diastolic function has not been studied in detail. The main goal was to assess the diastolic function both during and 120 min after bleeding, in the absence and in the presence of L-NAME. Also, the changes in mRNA and protein expression of nitric oxide synthase (NOS) isoforms were determined. New Zealand rabbits were divided into three groups: Sham group, H group (hemorrhage 20% blood volume), and H L-NAME group (hemorrhage treated with L-NAME). We evaluated systolic and diastolic ventricular functions in vivo and in vitro (Langendorff technique). Hemodynamic parameters and LV function were measured before, during, and at 120 min after bleeding. We analyzed the isovolumic relaxation using t ½ in vivo (closed chest). After that, hearts were excised and perfused in vitro to measure myocardial stiffness. Samples were frozen to measure NOS mRNA and protein expression. The t½ increased during bleeding and returned to basal values 120 min after bleeding. L-NAME blunted this effect. Data from the H group revealed a shift to the left in the LV end diastolic pressure-volume curve at 120 min after bleeding, which was blocked by L-NAME. iNOS and nNOS protein expression and mRNA levels increased at 120 min after the hemorrhage. Acute hemorrhage induces early and transient isovolumic relaxation impairment and an increase in myocardial stiffness 120 min after bleeding. L-NAME blunted the LV dysfunction, suggesting that NO modulates ventricular function through iNOS and nNOS isoforms.


Asunto(s)
Diástole , Choque Hemorrágico/fisiopatología , Disfunción Ventricular Izquierda/tratamiento farmacológico , Animales , Diástole/efectos de los fármacos , Diástole/fisiología , Corazón/fisiopatología , Hemorragia , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo II , Óxidos de Nitrógeno , Conejos , Choque Hemorrágico/complicaciones , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/etiología
2.
Antioxidants (Basel) ; 10(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208670

RESUMEN

Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.

3.
Oncogene ; 40(44): 6284-6298, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34584218

RESUMEN

Prostate cancer (PCa) that progresses after androgen deprivation therapy (ADT) remains incurable. The underlying mechanisms that account for the ultimate emergence of resistance to ADT, progressing to castrate-resistant prostate cancer (CRPC), include those that reactivate androgen receptor (AR), or those that are entirely independent or cooperate with androgen signaling to underlie PCa progression. The intricacy of metabolic pathways associated with PCa progression spurred us to develop a metabolism-centric analysis to assess the metabolic shift occurring in PCa that progresses with low AR expression. We used PCa patient-derived xenografts (PDXs) to assess the metabolic changes after castration of tumor-bearing mice and subsequently confirmed main findings in human donor tumor that progressed after ADT. We found that relapsed tumors had a significant increase in fatty acids and ketone body (KB) content compared with baseline. We confirmed that critical ketolytic enzymes (ACAT1, OXCT1, BDH1) were dysregulated after castrate-resistant progression. Further, these enzymes are increased in the human donor tissue after progressing to ADT. In an in silico approach, increased ACAT1, OXCT1, BDH1 expression was also observed for a subset of PCa patients that relapsed with low AR and ERG (ETS-related gene) expression. Further, expression of these factors was also associated with decreased time to biochemical relapse and decreased progression-free survival. Our studies reveal the key metabolites fueling castration resistant progression in the context of a partial or complete loss of AR dependence.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Cuerpos Cetónicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Front Biosci ; 12: 1041-8, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17127359

RESUMEN

In the last years, nitric oxide synthases (NOS) have been localized in mitochondria. At this site, NO yield directly regulates the activity of cytochrome oxidase, O(2) uptake and the production of reactive oxygen species. Recent studies showed that translocated neuronal nitric oxide synthase (nNOS) is posttranslationally modified including phosphorylation at Ser 1412 (in mice) and myristoylation in an internal residue. Different studies confirm that modified nNOS alpha is the main modulable isoform in mitochondria. Modulation of mtNOS was observed in different situations, like adaptation to reduced O(2) availability and hypoxia, adaptation to low environmental temperature, and processes linked to life and death by effects on kinases and transcription factors. We present here evidence about the role of mtNOS in the analyzed conditions.


Asunto(s)
Mitocondrias/enzimología , Óxido Nítrico Sintasa de Tipo I/fisiología , Adaptación Fisiológica , Animales , Encéfalo/embriología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Hígado/embriología , Hígado/enzimología , Hígado/crecimiento & desarrollo , Ratones , Plasticidad Neuronal , Oxígeno/metabolismo , Triyodotironina/fisiología
5.
FEBS Lett ; 589(22): 3330-5, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26297826

RESUMEN

RSUME (for RWD-domain-containing sumoylation enhancer), RWDD3 gene, was identified from a pituitary tumor cell with increased tumorigenic and angiogenic potential, and has higher expression in cerebellum, pituitary, heart, kidney, liver, pancreas, adrenal gland and prostate. RSUME is induced by cellular stress like hypoxia and heat shock, and is increased in pituitary tumors, in gliomas and in VHL tumors. Seven splicing forms have been described. Two of them correspond to non-coding RNAs and the other five possess an RWD domain in the N-terminus and differ in their C-terminal end. RSUME enhances SUMO conjugation by interacting with the SUMO conjugase Ubc9, increases Ubc9 thioester formation and therefore favors sumoylation of specific targets. RSUME increases IκB levels and stabilizes HIF-1α during hypoxia, leading to inhibition of NF-κB and increased HIF-1 transcriptional activity. RSUME inhibits pVHL function, thus suppressing HIF-1 and 2α ubiquitination and degradation. Disruption of the RWD domain structure of RSUME indicated that this domain is critical for RSUME action. The findings point to an important role of RSUME in the regulation and stability of specific targets, which are key regulatory mediators in cancer and inflammation.


Asunto(s)
Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Animales , Hipoxia de la Célula , Humanos , Inflamación/metabolismo , Inflamación/patología , Neoplasias/patología
6.
Cancer Res ; 73(17): 5459-72, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23796563

RESUMEN

Rapidly proliferating and neoplastically transformed cells generate the energy required to support rapid cell division by increasing glycolysis and decreasing flux through the oxidative phosphorylation (OXPHOS) pathway, usually without alterations in mitochondrial function. In contrast, little is known of the metabolic alterations, if any, which occur in cells harboring mutations that prime their neoplastic transformation. To address this question, we used a Pten-deficient mouse model to examine thyroid cells where a mild hyperplasia progresses slowly to follicular thyroid carcinoma. Using this model, we report that constitutive phosphoinositide 3-kinase (PI3K) activation caused by PTEN deficiency in nontransformed thyrocytes results in a global downregulation of Krebs cycle and OXPHOS gene expression, defective mitochondria, reduced respiration, and an enhancement in compensatory glycolysis. We found that this process does not involve any of the pathways classically associated with the Warburg effect. Moreover, this process was independent of proliferation but contributed directly to thyroid hyperplasia. Our findings define a novel metabolic switch to glycolysis driven by PI3K-dependent AMPK inactivation with a consequent repression in the expression of key metabolic transcription regulators.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo del Ácido Cítrico/genética , Fosforilación Oxidativa , Fosfohidrolasa PTEN/fisiología , Lesiones Precancerosas/patología , Glándula Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Respiración de la Célula , Células Cultivadas , Electroforesis en Gel Bidimensional , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Glucólisis , Inmunoprecipitación , Lactatos/metabolismo , Luciferasas/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Consumo de Oxígeno , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo
7.
Antioxid Redox Signal ; 16(10): 1150-80, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21967640

RESUMEN

Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis.


Asunto(s)
Ciclo Celular , Mitocondrias/fisiología , Animales , Muerte Celular , Proliferación Celular , Humanos , Oxidación-Reducción , Fosfotransferasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
8.
Thyroid ; 21(9): 1001-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21767142

RESUMEN

BACKGROUND: Poorly differentiated and anaplastic thyroid carcinomas have a rather poor prognosis. The development of relevant model systems to unravel in vitro and in vivo the molecular mechanisms governing the resistance of these tumors to therapy, as well as to test novel drug combinations, is a clear priority for thyroid-focused research. METHODS: Several novel cell lines were established from tumors developed by mice engineered to simultaneously express a loss-of-function Pten allele and an oncogenic Kras allele. RESULTS: Similar to most poorly differentiated thyroid tumors, these cell lines are characterized by simultaneous activation of the PI3K and MAPK pathways, by the presence of wild-type, functional p53, and by the severe downregulation of thyroid differentiation markers, including sodium-iodide symporter (NIS). Further, they display a highly glycolytic phenotype. They can be grafted to syngeneic, immunocompetent hosts, and easily metastasize to the lungs. CONCLUSIONS: These mouse cell lines are a novel and invaluable tool that can be used to develop innovative therapeutic approaches to poorly differentiated carcinomas in a more physiological context than using xenografts of human cell lines in immunocompromised mice.


Asunto(s)
Diferenciación Celular , Neoplasias de la Tiroides/patología , Adenocarcinoma Folicular , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Invasividad Neoplásica , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/genética , Factores de Tiempo
9.
Artículo en Inglés | MEDLINE | ID: mdl-22654848

RESUMEN

A significant number of well-differentiated thyroid cancers progress or recur, becoming resistant to current therapeutic options. Mouse models recapitulating the genetic and histological features of advanced thyroid cancer have been an invaluable tool to dissect the mechanisms involved in the progression from indolent, well differentiated tumors to aggressive, poorly differentiated carcinomas, and to identify novel therapeutic targets. In this review, we focus on the lessons learned from models of epithelial cell-derived thyroid cancer showing progression from hyperplastic lesions to locally invasive and metastatic carcinomas.

10.
PLoS One ; 6(4): e19031, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559502

RESUMEN

The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel's fluorescence intensity in a pair of images to the overall Pearsons correlation and Manders' overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Mitocondrias/metabolismo , Algoritmos , Animales , Biomarcadores , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Células 3T3 NIH , Plásmidos/metabolismo , Factores de Tiempo
11.
Oncotarget ; 2(12): 1109-26, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22190384

RESUMEN

Anaplastic thyroid carcinoma (ATC) is the most aggressive form of thyroid cancer, and often derives from pre-existing well-differentiated tumors. Despite a relatively low prevalence, it accounts for a disproportionate number of thyroid cancer-related deaths, due to its resistance to any therapeutic approach. Here we describe the first mouse model of ATC, obtained by combining in the mouse thyroid follicular cells two molecular hallmarks of human ATC: activation of PI3K (via Pten deletion) and inactivation of p53. By 9 months of age, over 75% of the compound mutant mice develop aggressive, undifferentiated thyroid tumors that evolve from pre-existing follicular hyperplasia and carcinoma. These tumors display all the features of their human counterpart, including pleomorphism, epithelial-mesenchymal transition, aneuploidy, local invasion, and distant metastases. Expression profiling of the murine ATCs reveals a significant overlap with genes found deregulated in human ATC, including genes involved in mitosis control. Furthermore, similar to the human tumors, [Pten, p53]thyr-/- tumors and cells are highly glycolytic and remarkably sensitive to glycolysis inhibitors, which synergize with standard chemotherapy. Taken together, our results show that combined PI3K activation and p53 loss faithfully reproduce the development of thyroid anaplastic carcinomas, and provide a compelling rationale for targeting glycolysis to increase chemotherapy response in ATC patients.


Asunto(s)
Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Proteína p53 Supresora de Tumor/metabolismo , Aneuploidia , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Glucólisis , Humanos , Ratones , Ratones Transgénicos , Mitosis/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas/metabolismo , Carcinoma Anaplásico de Tiroides , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/genética
12.
Adv Drug Deliv Rev ; 61(14): 1234-49, 2009 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-19733603

RESUMEN

Phylogenetic studies had shown that evolution of mitochondria occurred in parallel with the maturation of kinases implicated in growth and final size of modern organisms. In the last years, different reports confirmed that MAPKs, Akt, PKA and PKC are present in mitochondria, particularly in the intermembrane space and inner membrane where they meet mitochondrial constitutive upstream activators. Although a priori phosphorylation is the apparent aim of translocation, new perspectives indicate that kinase activation depends on redox status as determined by the mitochondrial production of oxygen species. We observed that the degree of mitochondrial oxidation of ERK Cys(38) and Cys(214) discriminates the kinase to be phosphorylated and determines translocation to the nuclear compartment and proliferation, or accumulation in mitochondria and arrest. Otherwise, transcriptional gene regulation by Akt depends on Cys(60) and Cys(310) oxidation to sulfenic and sulfonic acids. It is concluded that the interactions between kinases and mitochondria control cell signaling pathways and participate in the modulation of cell proliferation and arrest, tissue protection, tumorigenesis and cancer progression.


Asunto(s)
Mitocondrias/enzimología , Mitocondrias/fisiología , Proteínas Quinasas/fisiología , Transducción de Señal/fisiología , Sistemas de Liberación de Medicamentos/métodos , Humanos , Modelos Biológicos , Infarto del Miocardio/metabolismo , Neoplasias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
13.
PLoS One ; 4(10): e7523, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19844585

RESUMEN

Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473) by mTORC2 and Thr(308) by PDK1. On these bases, we investigated the mechanistic connection of H(2)O(2) yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2)O(2) entails the entrance of cytosolic P-Akt1 Ser(473) to mitochondria, where it is further phosphorylated at Thr(308) by constitutive PDK1. Phosphorylation of Thr(308) in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2)O(2), Akt1-PDK1 association is disrupted and P-Akt1 Ser(473) accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2)O(2) effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310) to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.


Asunto(s)
Mitocondrias/metabolismo , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis , Ciclo Celular , Linaje de la Célula , Ácido Cisteico/química , Citosol/metabolismo , Peróxido de Hidrógeno/química , Ratones , Modelos Biológicos , Células 3T3 NIH , Fosforilación , Ácidos Sulfénicos/química
14.
Exp Biol Med (Maywood) ; 234(9): 1020-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19546350

RESUMEN

Mitochondria are specialized organelles that control energy metabolism and also activate a multiplicity of pathways that modulate cell proliferation and mitochondrial biogenesis or, conversely, promote cell arrest and programmed cell death by a limited number of oxidative or nitrative reactions. Nitric oxide (NO) regulates oxygen uptake by reversible inhibition of cytochrome oxidase and the production of superoxide anion from the mitochondrial electron transfer chain. In this sense, NO produced by mtNOS will set the oxygen uptake level and contribute to oxidation-reduction reaction (redox)-dependent cell signaling. Modulation of translocation and activation of neuronal nitric oxide synthase (mtNOS activity) under different physiologic or pathologic conditions represents an adaptive response properly modulated to adjust mitochondria to different cell challenges.


Asunto(s)
Metabolismo Energético , Mitocondrias/enzimología , Mitocondrias/fisiología , Óxido Nítrico Sintasa/metabolismo , Estrés Fisiológico , Óxido Nítrico/metabolismo
15.
PLoS One ; 3(6): e2379, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18545666

RESUMEN

Mitochondria are major cellular sources of hydrogen peroxide (H(2)O(2)), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2)O(2) concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2)O(2) due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2)O(2) yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2)O(2) increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2)O(2) arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2)O(2) level. Like this, high H(2)O(2) or directed mutation of redox-sensitive ERK2 Cys(214) impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H(2)O(2) yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype.


Asunto(s)
Mitocondrias/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/patología , Animales , Catálisis , Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/enzimología , Ratones , Neoplasias/enzimología , Oxidación-Reducción , Fenotipo , Fosforilación , Transporte de Proteínas , Transducción de Señal
16.
Am J Physiol Lung Cell Mol Physiol ; 293(5): L1230-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17766584

RESUMEN

Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The keratinocyte growth factor (KGF) favorably influences alveolar maintenance and repair and possesses anti-inflammatory properties. We aimed to determine whether exogenous KGF prevented or corrected elastase-induced pulmonary emphysema in vivo. Treatment with 5 mg x kg(-1) x day(-1) KGF before elastase instillation prevented pulmonary emphysema. This effect was associated with 1) a sharp reduction in bronchoalveolar lavage fluid total protein and inflammatory cell recruitment, 2) a reduction in the pulmonary expression of the chemokines CCL2 (or monocyte chemoattractant protein-1) and CXCL2 (or macrophage inflammatory protein-2alpha) and of the adhesion molecules ICAM-1 and VCAM-1, 3) a reduction in matrix metalloproteinase (MMP)-2 and MMP-9 activity at day 3, and 4) a major reduction in DNA damage detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) in alveolar cells at day 7. Treatment with KGF after elastase instillation had no effect on elastase-induced emphysema despite the conserved expression of the KGF receptor in the lungs of elastase-instilled animals as determined by immunohistochemistry. In vitro, KGF abolished the elastase-induced increase in CCL2, CXCL2, and ICAM-1 mRNA in the MLE-12 murine alveolar epithelial cell line. We conclude that KGF pretreatment protected against elastase-induced pulmonary inflammation, activation of MMPs, alveolar cell DNA damage, and subsequent emphysema in mice.


Asunto(s)
Daño del ADN/efectos de los fármacos , Factor 7 de Crecimiento de Fibroblastos/farmacología , Elastasa Pancreática/toxicidad , Enfisema Pulmonar/prevención & control , Animales , Apoptosis , Líquido del Lavado Bronquioalveolar/química , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL2/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Etiquetado Corte-Fin in Situ , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
17.
J Biol Chem ; 281(8): 4779-86, 2006 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16361261

RESUMEN

Although transcriptional effects of thyroid hormones have substantial influence on oxidative metabolism, how thyroid sets basal metabolic rate remains obscure. Compartmental localization of nitric-oxide synthases is important for nitric oxide signaling. We therefore examined liver neuronal nitric-oxide synthase-alpha (nNOS) subcellular distribution as a putative mechanism for thyroid effects on rat metabolic rate. At low 3,3',5-triiodo-L-thyronine levels, nNOS mRNA increased by 3-fold, protein expression by one-fold, and nNOS was selectively translocated to mitochondria without changes in other isoforms. In contrast, under thyroid hormone administration, mRNA level did not change and nNOS remained predominantly localized in cytosol. In hypothyroidism, nNOS translocation resulted in enhanced mitochondrial nitric-oxide synthase activity with low O2 uptake. In this context, NO utilization increased active O2 species and peroxynitrite yields and tyrosine nitration of complex I proteins that reduced complex activity. Hypothyroidism was also associated to high phospho-p38 mitogen-activated protein kinase and decreased phospho-extracellular signal-regulated kinase 1/2 and cyclin D1 levels. Similarly to thyroid hormones, but without changing thyroid status, nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester increased basal metabolic rate, prevented mitochondrial nitration and complex I derangement, and turned mitogen-activated protein kinase signaling and cyclin D1 expression back to control pattern. We surmise that nNOS spatial confinement in mitochondria is a significant downstream effector of thyroid hormone and hypothyroid phenotype.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Hipotiroidismo/patología , Hígado/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Ciclina D1/metabolismo , Citosol/metabolismo , Electrones , Electroforesis en Gel de Poliacrilamida , Proteínas HSP90 de Choque Térmico/metabolismo , Hipotiroidismo/metabolismo , Immunoblotting , Inmunoprecipitación , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Microscopía Inmunoelectrónica , Mitocondrias/metabolismo , Mitocondrias Hepáticas/metabolismo , Modelos Químicos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/metabolismo , Oxidantes/metabolismo , Oxígeno/metabolismo , Ácido Peroxinitroso/química , Fenotipo , Isoformas de Proteínas , Transporte de Proteínas , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Fracciones Subcelulares/metabolismo , Hormonas Tiroideas/metabolismo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Hepatology ; 40(1): 157-66, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15239099

RESUMEN

Mitochondrial nitric oxide synthase (mtNOS) is a fine regulator of oxygen uptake and reactive oxygen species that eventually modulates the activity of regulatory proteins and cell cycle progression. From this perspective, we examined liver mtNOS modulation and mitochondrial redox changes in developing rats from embryonic days 17-19 and postnatal day 2 (proliferating hepatocyte phenotype) through postnatal days 15-90 (quiescent phenotype). mtNOS expression and activity were almost undetectable in fetal liver, and progressively increased after birth by tenfold up to adult stage. NO-dependent mitochondrial hydrogen peroxide (H(2)O(2)) production and Mn-superoxide dismutase followed the developmental modulation of mtNOS and contributed to parallel variations of cytosolic H(2)O(2) concentration ([H(2)O(2)](ss)) and cell fluorescence. mtNOS-dependent [H(2)O(2)](ss) was a good predictor of extracellular signal-regulated kinase (ERK)/p38 activity ratio, cyclin D1, and tissue proliferation. At low 10(-11)-10(-12) M [H(2)O(2)](ss), proliferating phenotypes had high cyclin D1 and phospho-ERK1/2 and low phospho-p38 mitogen-activated protein kinase, while at 10(-9) M [H(2)O(2)](ss), quiescent phenotypes had the opposite pattern. Accordingly, leading postnatal day 2-isolated hepatocytes to embryo or adult redox conditions with H(2)O(2) or NO-H(2)O(2) scavengers, or with ERK inhibitor U0126, p38 inhibitor SB202190 or p38 activator anisomycin resulted in correlative changes of ERK/p38 activity ratio, cyclin D1 expression, and [(3)H] thymidine incorporation in the cells. Accordingly, p38 inhibitor SB202190 or N-acetyl-cysteine prevented H(2)O(2) inhibitory effects on proliferation. In conclusion, the results suggest that a synchronized increase of mtNOS and derived H(2)O(2) operate on hepatocyte signaling pathways to support the liver developmental transition from proliferation to quiescence.


Asunto(s)
Hepatocitos/citología , Hígado/embriología , Hígado/crecimiento & desarrollo , Mitocondrias Hepáticas/enzimología , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal/fisiología , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , División Celular/fisiología , Citosol/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario y Fetal , Homeostasis , Peróxido de Hidrógeno/metabolismo , Mitocondrias Hepáticas/fisiología , Concentración Osmolar , Oxidación-Reducción , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA