Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 84(5): 196-212, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33292089

RESUMEN

p-Synephrine (SN) is an alkaloid added to thermogenic formulations for weight loss that is predominantly absorbed in the human gastrointestinal tract (GI). As the adverse effects of SN on GI cells remain unclear, the aim of present study was to examine whether SN affected cell viability, cell cycle kinetics, genomic stability, redox status, and expression of cAMP/PKA pathway genes related to metabolism/energy homeostasis in stomach mucosa (MNP01) and colon adenocarcinoma (Caco-2) human cells. p-Synephrine at 25-5000 µM was not cytotoxic to both cell lines. At 2-200 µM, SN increased the formation of reactive oxygen species (ROS) but also enhanced levels of antioxidant defense molecules glutathione (GSH) and catalase (CAT) activity, which may account for the absence of cytotoxicity/mutagenicity in both cell lines. SN induced expression of the cAMP/PKA pathway genes ADCY3 and MAPK1 in MNP01 cells and MAPK1, GNAS, PRKACA, and PRKAR2A in Caco-2 cells, as well as modulated the transcription of genes related to cell proliferation (JUN; AKT1) and inflammation (RELA; TNF) in both cell lines. Therefore, the improved antioxidant state mitigated pro-oxidative effects attributed to SN. Evidence indicates that SN does not appear to exhibit adverse potential but modulated the cAMP/PKA pathway in human GI cell lines.


Asunto(s)
Fármacos Antiobesidad/efectos adversos , Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Sinefrina/efectos adversos , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Homeostasis , Humanos , Oxidación-Reducción/efectos de los fármacos
2.
Eur J Nutr ; 59(7): 2985-2995, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31724083

RESUMEN

PURPOSE: Açai pulp is a source of phytochemicals and has been associated with antioxidant, anti-inflammatory, and antigenotoxic effects. This study aimed to assess the effects of açai pulp consumption on oxidative, inflammatory, and aerobic capacity markers of cyclist athletes. RESEARCH METHODS AND PROCEDURES: A crossover, randomized, placebo-controlled, single-blind study was developed with ten male cyclists (33.5 ± 4.7 years old, body mass index of 23.9 ± 1.38 kg/m2, and training load around 1875 ± 238 AU/week). The athletes consumed 400 g/day of pasteurized açai pulp (AP) or placebo (PL) for 15 days, with a 30-day wash-out period between trials. Lipid peroxidation, serum antioxidant capacity, DNA damage in peripheral blood (Comet assay), IL-6 and TNF-alpha, blood lactate concentration during effort, anaerobic threshold intensity (ATi), maximum workload reached (Wmax), rating of perceived exertion threshold (RPET), and heart rate threshold (HRT) were evaluated before and after each intervention. Data were analyzed using a linear regression model with mixed effects (p ≤ 0.05). RESULTS: Increased serum antioxidant capacity (p = 0.006) and decreased lipid peroxidation (p = 0.01) were observed in subjects after intervention with AP. Blood lactate levels during effort significantly decreased (by 29%, p = 0.025) and ATi increased (p = 0.006) after AP. No significant effect on DNA damage was attributed to AP consumption. CONCLUSION: We found notable effects of AP intervention on antioxidant status in athletes. Both the reduction in blood lactate concentration and increase in ATi during the effort suggest an overall improvement in the aerobic capacity of the cyclists, confirming that AP consumption may influence variables associated with performance in endurance athletes.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Adulto , Suplementos Dietéticos , Humanos , Lactatos , Masculino , Método Simple Ciego
3.
Arch Toxicol ; 94(8): 2625-2636, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32474618

RESUMEN

Metallic nanoparticles such as silver (Ag NPs) and iron oxide (Fe3O4 NPs) nanoparticles are high production volume materials due to their applications in various consumer products, and in nanomedicine. However, their inherent toxicities to human cells remain a challenge. The present study was aimed at combining lipidomics data with common phenotypically-based toxicological assays to gain better understanding into cellular response to Ag NPs and Fe3O4 NPs exposure. HepG2 cells were exposed to different concentrations (3.125, 6.25, 12.5, 25, 50 and 100 µg/ml) of the nanoparticles for 24 h, after which they were assayed for toxic effects using toxicological assays like cytotoxicity, mutagenicity, apoptosis and oxidative stress. The cell membrane phospholipid profile of the cells was also performed using shotgun tandem mass spectrometry. The results showed that nanoparticles exposure resulted in concentration-dependent cytotoxicity as well as reduced cytokinesis-block proliferation index (CBPI). Also, there was an increase in the production of ROS and superoxide anions in exposed cells compared to the negative control. The lipidomics data revealed that nanoparticles exposure caused a modulation of the phospholipidome of the cells. A total of 155 lipid species were identified, out of which the fold changes of 23 were significant. The high number of differentially changed phosphatidylcholine species could be an indication that inflammation is one of the major mechanisms of toxicity of the nanoparticles to the cells.


Asunto(s)
Hepatocitos/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Nanopartículas del Metal/toxicidad , Compuestos de Plata/toxicidad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinesis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Lipidómica , Necrosis , Estrés Oxidativo/efectos de los fármacos , Fosfolípidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Superóxidos/metabolismo , Espectrometría de Masas en Tándem
4.
Ecotoxicol Environ Saf ; 189: 109982, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31830603

RESUMEN

The increasing application of nanomaterials in various fields such as drug delivery, cosmetics, disease detection, cancer treatment, food preservation etc. has resulted in high levels of engineered nanoparticles in the environment, thus leading to higher possibility of direct or indirect interactions between these particles and biological systems. In this study, the toxic effects of three commercially available nanomaterials; copper oxide nanoparticles, copper-iron oxide nanopowders and carbon nanopowders were determined in the human hepatoma HepG2 cells using various toxicological assays which are indicative of cytotoxicity (MTT and neutral red assays), mutagenicity (cytokinesis-block micronucleus assay), oxidative stress (total reactive oxygen species and superoxide anion production) and mitochondrial impairment (cellular oxygen consumption). There was increased cytotoxicity, mutagenicity, and mitochondrial impairment in the cells treated with higher concentrations of the nanomaterials, especially the copper oxide nanoparticles. The fold production of reactive oxygen species was similar at the concentrations tested in this study but longer exposure duration resulted in production of more superoxide anions. The results of this study showed that copper oxide nanoparticles are highly toxic to the human HepG2 cells, thus implying that the liver is a target organ in human for copper oxide nanoparticles toxicity.


Asunto(s)
Carbono/toxicidad , Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Compuestos Ferrosos/toxicidad , Nanopartículas/toxicidad , Carbono/química , Cobre/química , Daño del ADN/efectos de los fármacos , Contaminantes Ambientales/química , Compuestos Ferrosos/química , Células Hep G2 , Humanos , Mitocondrias/efectos de los fármacos , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos
5.
Genet Mol Biol ; 43(3): e20190347, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32644097

RESUMEN

Dietary phenolic compounds such as caffeic and chlorogenic acid exert an antiproliferative effect and modulate the gene-specific DNA methylation status in human breast tumor cells, but it remains unclear whether they interfere with global DNA methylation in human leukemia cells. We examined whether caffeic and chlorogenic acid (1-250 µM) exert antitumor action in human promyelocytic leukemia cells (HL-60) and human acute T-cell leukemia cells (Jurkat). Caffeic and chlorogenic acid did not reduce cell viability in the two cell lines, as assessed using the neutral red uptake and MTT assays. These phenolic acids (1-100 µM) neither induced DNA damage (comet assay) nor increased the micronuclei frequency (micronucleus assay) in HL-60 and Jurkat cells, indicating that they were not genotoxic or mutagenic. Analysis of global DNA methylation levels using a 5-mC DNA ELISA kit revealed that chlorogenic acid at a non-cytotoxic concentration (100 µM) induced global DNA hypomethylation in Jurkat cells, but not in HL-60 cells, suggesting that it exerts a cell-specific effect. Caffeic acid did not change global DNA methylation. As other phenolic compounds, chlorogenic acid probably modulates DNA methylation by targeting DNA methyltransferases. The hypomethylating action of chlorogenic acid can be beneficial against hematological malignances whose pathogenic processes involve impairment of DNA methylation.

6.
Bioorg Chem ; 85: 455-468, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776556

RESUMEN

This study describes a series of newly synthesized phosphine/diimine ruthenium complexes containing the lawsone as bioligand with enhanced cytotoxicity against different cancer cells, and apoptosis induction in prostatic cancer cells DU-145. The complexes [Ru(law)(N-N)2]PF6 where N-N is 2,2'-bipyridine (1) or 1,10-phenanthroline (2) and [Ru(law)(dppm)(N-N)]PF6, where dppm means bis(diphenylphosphino)methane, N-N is 2,2'-bipyridine (3) or 1,10-phenanthroline (4), and law is lawsone, were synthesized and fully characterized by elemental analysis, molar conductivity, NMR, UV-vis, IR spectroscopies and cyclic voltammetry. The interaction of the complexes (1-4) with DNA was evaluated by circular dichroism, gel electrophoresis, and fluorescence, and the complexes presented interactions by the minor grooves DNA. The phosphinic series of complexes exhibited a remarkably broad spectrum of anticancer activity with approximately 34-fold higher than cisplatin and 5-fold higher than doxorubicin, inhibiting the growth of 3D tumor spheroids and the ability to retain the colony survival of DU-145 cells. Also, the complex (4) inhibits DU-145 cell adhesion and migration potential indicating antimetastatic properties. The mechanism of its anticancer activity was found to be related to increased reactive oxygen species (ROS) generation, increased the BAX/BCL-2 ratio and subsequent apoptosis induction. Overall, these findings suggested that the complex (4) could be a promising candidate for further evaluation as a chemotherapeutic agent in the prostate cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Naftoquinonas/farmacología , Esferoides Celulares/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Bovinos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , ADN/metabolismo , Humanos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/metabolismo , Sustancias Intercalantes/farmacología , Masculino , Naftoquinonas/síntesis química , Naftoquinonas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Rutenio/química
7.
J Toxicol Environ Health A ; 82(4): 299-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30909850

RESUMEN

Vitamin D3 deficiency has been correlated with altered expression of genes associated with increased blood pressure (BP); however, the role of vitamin D3 supplementation in the genetic mechanisms underlying hypertension remains unclear. Thus, the aim of this study was investigate the consequences of vitamin D3 supplemented (10,000 IU/kg) or deficient (0 IU/kg) diets on regulation of expression of genes related to hypertension pathways in heart cells of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. An additional aim was to assess the impact of vitamin D3 on DNA damage and oxidative stress markers. The gene expression profiles were determined by PCR array, DNA damage was assessed by an alkaline comet assay, and oxidative stress markers by measurement of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels. In SHR rats data showed that the groups of genes most differentially affected by supplemented and deficient diets were involved in BP regulation and renin-angiotensin system. In normotensive WKY controls, the profile of gene expression was similar between the two diets. SHR rats were more sensitive to changes in gene expression induced by dietary vitamin D3 than normotensive WKY animals. In addition to gene expression profile, vitamin D3 supplemented diet did not markedly affect DNA or levels of TBARS and GSH levels in both experimental groups. Vitamin D3 deficient diet produced lipid peroxidation in SHR rats. The results of this study contribute to a better understanding of the role of vitamin D3 in the genetic mechanisms underlying hypertension. Abbreviations: AIN, American Institute of Nutrition; EDTA, disodium ethylenediaminetetraacetic acid; GSH, glutathione; PBS, phosphate buffer solution; SHR, spontaneously hypertensive rats; TBARS, thiobarbituric acid reactive substances; WKY, Wistar Kyoto.


Asunto(s)
Daño del ADN/efectos de los fármacos , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Deficiencia de Vitamina D/fisiopatología , Vitamina D/uso terapéutico , Animales , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
8.
J Toxicol Environ Health A ; 80(19-21): 1116-1128, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28880739

RESUMEN

Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Citocinas/metabolismo , Suplementos Dietéticos , Regulación de la Expresión Génica , Corazón/fisiología , Hígado/fisiología , Metionina , Animales , Biomarcadores/sangre , Enfermedades Cardiovasculares/etiología , Dieta , Femenino , Homocisteína/sangre , Hígado/metabolismo , Ratones , Miocardio/metabolismo , Estrés Oxidativo
9.
J Toxicol Environ Health A ; 80(19-21): 1156-1165, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28891756

RESUMEN

The increasing production of silver nanoparticles (AgNPs) and titanium dioxide nanoparticles (TiO2NPs) has resulted in their elevated concentrations in the environment. This study was, therefore, aimed at determining the distribution, redox parameters, and genotoxic effects in male Wistar rats that were treated with either AgNP or TiO2NP individually, as well as under a co-exposure scenario. Animals were exposed via oral gavage to either sodium citrate buffer (vehicle), 0.5 mg/kg/day TiO2NP, 0.5 mg/kg/day AgNP or a mixture of TiO2NPs and AgNPs. Exposure lasted 45 days after which rats were sacrificed, and tissue biodistribution of Ag and Ti measured. The blood concentration of glutathione (GSH) and activities of glutathione peroxidase (GPx) and catalase (CAT) were determined while the genotoxicity was analyzed using the comet assay in peripheral blood and liver cells. The tissue concentrations of Ag followed the order; blood > liver > kidneys while for Ti the order was kidneys > liver > blood. There was no significant change in the measured redox parameters in animals that were exposed to TiO2NPs. However, there was a significant increase in GSH levels accompanied by a reduction in the GPx activity in AgNP-treated and co-exposed groups. The individual or co-exposure to TiO2NP and AgNP did not markedly induce genotoxicity in blood or liver cells. Data showed that TiO2NP did not produce significant oxidative stress or genotoxicity in rats at the dose used in this study while the same dose level of AgNPs resulted in oxidative stress, but no noticeable adverse genotoxic effects.


Asunto(s)
Contaminantes Ambientales/toxicidad , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Titanio/toxicidad , Animales , Análisis Químico de la Sangre , Daño del ADN , Masculino , Oxidación-Reducción , Ratas , Ratas Wistar , Distribución Tisular
10.
J Toxicol Environ Health A ; 79(4): 174-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26914397

RESUMEN

This study investigates the potential beneficial effects of niacin (NA; vitamin B3) supplementation in rats chronically exposed to methylmercury (MeHg). Animals were randomly assigned to one of 4 groups (n = 6): Group I, control, received distilled water by gavage; Group II, received MeHg (100 µg/kg/d) by gavage; Group III, received NA (50 mg/kg/d) in drinking water; Group IV, received MeHg (100 µg/kg/d) by gavage + NA (50 mg/kg/d) in drinking water. Biochemical parameters levels of glucose, triglycerides, total cholesterol and fractions, and enzyme activities aspartate transaminase (AST) and alanine transaminase (ALT) were determined. Further, oxidative stress markers activity of glutathione peroxidase (GPx) and catalase (CAT) activity, as well as levels of reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide, were examined, and the comet assay was performed, using blood/plasma. Hg levels were measured in blood, brain, and kidneys of animals. Our results demonstrated that NA reduced adverse effects produced by MeHg. The mechanism underlying these effects appears to be related to the intrinsic antioxidant potential of NA. Considering the beneficial effects attributed to NA following MeHg exposure and that fish are the main source of both NA and MeHg, future studies need to evaluate the potential counteractive effect of NA against the adverse consequences of MeHg exposure in fish-eating populations.


Asunto(s)
Antioxidantes/metabolismo , Compuestos de Metilmercurio/toxicidad , Niacina/farmacología , Estrés Oxidativo/efectos de los fármacos , Complejo Vitamínico B/farmacología , Animales , Suplementos Dietéticos/análisis , Masculino , Compuestos de Metilmercurio/sangre , Niacina/administración & dosificación , Ratas , Ratas Wistar , Complejo Vitamínico B/administración & dosificación
11.
J Toxicol Environ Health A ; 79(20): 885-93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27494754

RESUMEN

Chrysobalanus icaco L. is an underexplored plant found in tropical areas around the globe. Currently, there is no apparent information regarding the effects C. icaco fruits may exert in vivo or potential role in health promotion. This study aimed at providing evidence regarding the in vivo influence of this fruit on antigenotoxicity, antimutagenicity, and oxidative stress in rats. Male Wistar rats were treated with 100, 200, or 400 mg/kg body weight (bw)/d C. icaco fruit for 14 d. Doxorubicin (DXR, 15 mg/kg bw, ip) was used for DNA damaging and as an oxidant to generate reactive oxygen species (ROS). Genomic instability was assessed by the comet assay and micronucleus (MN) test, while antioxidant activity was determined by oxidative burst of neutrophils. Chrysobalanus icaco fruit polyphenols were quantified and characterized by high-performance liquid chromatography coupled to a diode array detector and tandem mass spectrometer (HPLC-DAD-MS/MS). The concentrations of 19 chemical elements were determined by inductively coupled plasma-mass spectroscopy (ICP-MS). Significant amounts of polyphenols, magnesium, and selenium were found in C. icaco fruit. This fruit displayed in vivo antioxidant activity against DXR-induced damage in rat peripheral blood neutrophils, antigenotoxicity in peripheral blood cells, and antimutagenicity in bone-marrow cells and peripheral blood cells. Correlation analyses between endpoints examined indicated that the mechanism underlying chemopreventive actions of C. icaco fruit was attributed to inhibition of NADPH oxidase complex manifested as low levels of DNA damage in animals exposed to DXR. Data indicate that phytochemicals and minerals in C. icaco fruit protect DNA against damage in vivo associated with their antioxidant properties.


Asunto(s)
Antioxidantes/farmacología , Chrysobalanaceae/química , Daño del ADN/efectos de los fármacos , NADPH Oxidasas/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Doxorrubicina/toxicidad , Frutas/química , Masculino , Sustancias Protectoras/farmacología , Ratas , Ratas Wistar
12.
J Toxicol Environ Health A ; 78(16): 1073-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26275098

RESUMEN

Lead (Pb) is a toxic metal that is widely used by metallurgical industries such as car battery recycling. Exposure to the metal may modify the redox status of the cells and consequently result in changes in activities of important enzymes such as delta-aminolevulinic acid dehydratase (ALAD) and glutathione peroxidase (GPx). Similarly, genetic polymorphisms may modulate the activities of enzymes related to detoxification processes of the metal and may modify Pb body burden. Therefore, the aims of the present study were (i) to evaluate the correlation between blood lead levels (BLL) and activities of the enzymes ALAD and GPx, and (ii) to determine whether activities of these enzymes may be influenced by polymorphisms in ALAD and GPx genes in Brazilian automotive battery workers chronically exposed to Pb, as well as the effects of these polymorphisms on BLL. Our study included 257 participants; BLL were determined by inductively couple plasma-mass spectrometry (ICP-MS), and the activities of the enzymes ALAD and GPx were quantified spectrophotometrically; and genotyping of ALAD (rs1800435) and GPx-1 (rs1800668) polymorphisms was performed by TaqMan assays (real-time polymerase chain reaction, RT-PCR). Significant negative correlations were found between BLL and ALAD activity. Subjects who carried at least one polymorphic allele for ALAD gene displayed markedly lower ALAD activities, while no significant effect was observed regarding GPx-1 polymorphism and activity of the same enzyme. Further, ALAD and GPx-1 polymorphisms exerted no marked influence on BLL. Taken together, our results showed that BLL affected ALAD but not GPx activities, and these were not modulated by polymorphisms in ALAD and GPx gene. Further, the rs1800435 SNP showed a tendency to modulate ALAD activity, while the rs1800668 SNP did not modulate GPx activity in Brazilian automotive battery workers exposed to Pb.


Asunto(s)
Glutatión Peroxidasa/genética , Plomo/toxicidad , Metalurgia , Exposición Profesional , Porfobilinógeno Sintasa/genética , Adolescente , Adulto , Anciano , Automóviles , Brasil , Estudios Transversales , Glutatión Peroxidasa/sangre , Humanos , Plomo/sangre , Espectrometría de Masas , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Porfobilinógeno Sintasa/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa , Reciclaje , Adulto Joven , Glutatión Peroxidasa GPX1
13.
Arch Environ Contam Toxicol ; 69(2): 173-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25690149

RESUMEN

The aim of the present study was to evaluate possible effects of endothelial nitric oxide synthase (eNOS) polymorphisms on systolic (SBP) and diastolic blood pressure (DBP) and on nitrite levels in plasma (NitP) in a population coexposed to methylhemoglobin (MeHg) and lead (Pb) in the Amazonian region, Brazil. Plasmatic levels of hemoglobin Hg (HgP) and Pb (PbP) were determined by inductively coupled plasma-mass spectrometry, whereas NitP were quantified by chemiluminescence. Genotyping was performed by conventional and restriction fragment length polymorphism-polymerase chain reaction assay. The population age ranged from 18 to 87 years (mean 40 ± 16), and the distribution between the sexes was homogenous (63 men and 50 women). Mean HgP and PbP were 7.1 ± 6.1 and 1.1 ± 1.1 µg L(-1), respectively. PbP was correlated to SBP and DBP, whereas no effects were observed for HgP on blood pressure. Subjects carrying the 4b allele in intron 4 presented greater SBP and DBP compared with those who had the 4a4a genotype. In addition, interactions between alcohol consumption and the -786 T/C polymorphism were observed on NitP, i.e., individuals carrying the polymorphic allele and drinkers had lower NitP. Taken together, our data give new insights concerning the genetic effects of eNOS polymorphisms on biomarkers related to cardiovascular status in populations coexposed to Hg and Pb.


Asunto(s)
Presión Sanguínea/genética , Contaminantes Ambientales/toxicidad , Plomo/toxicidad , Compuestos de Metilmercurio/toxicidad , Óxido Nítrico Sintasa de Tipo III/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Brasil/epidemiología , Enfermedades Cardiovasculares/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/metabolismo , Femenino , Humanos , Plomo/metabolismo , Masculino , Compuestos de Metilmercurio/metabolismo , Persona de Mediana Edad , Nitritos/sangre , Adulto Joven
14.
Genet Mol Biol ; 38(4): 490-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26537603

RESUMEN

Curcumin (CMN) is the principal active component derived from the rhizome of Curcuma longa (Curcuma longa L.). It is a liposoluble polyphenolic compound that possesses great therapeutic potential. Its clinical application is, however, limited by the low concentrations detected following oral administration. One key strategy for improving the solubility and bioavailability of poorly water-soluble drugs is solid dispersion, though it is not known whether this technique might influence the pharmacological effects of CMN. Thus, in this study, we aimed to evaluate the antioxidant and antigenotoxic effects of CMN formulated in a solid dispersion (CMN SD) compared to unmodified CMN delivered to Wistar rats. Cisplatin (cDDP) was used as the damage-inducing agent in these evaluations. The comet assay results showed that CMN SD was not able to reduce the formation of cDDP-DNA crosslinks, but it decreased the formation of micronuclei induced by cDDP and attenuated cDDP-induced oxidative stress. Furthermore, at a dose of 50 mg/kg b.w. both CMN SD and unmodified CMN increased the expression of Tp53 mRNA. Our results showed that CMN SD did not alter the antigenotoxic effects observed for unmodified CMN and showed effects similar to those of unmodified CMN for all of the parameters evaluated. In conclusion, CMN SD maintained the protective effects of unmodified CMN with the advantage of being chemically water soluble, with maximization of absorption in the gastrointestinal tract. Thus, the optimization of the physical and chemical properties of CMN SD may increase the potential for the therapeutic use of curcumin.

15.
Phytother Res ; 28(1): 28-32, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23436457

RESUMEN

Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation.


Asunto(s)
Antihipertensivos/farmacología , Frutas/química , Hipertensión/tratamiento farmacológico , Passiflora/química , Animales , Antihipertensivos/química , Antioxidantes/metabolismo , Ácido Ascórbico/química , Presión Sanguínea/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Carotenoides/química , Cromatografía Líquida de Alta Presión , Creatinina/sangre , Flavonoides/química , Glutatión/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Estrés Oxidativo , Fenoles/química , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Espectrometría de Masas en Tándem , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
16.
Toxicon ; 243: 107746, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38704124

RESUMEN

Our study presents the anticancer potential of crotamine from Crotalus durissus terrificus in human prostate cancer cell line DU-145. Crotamine isolation was conducted through RP-FPLC, its molecular mass analyzed by MALDI-TOF was 4881.4 kDa, and N-terminal sequencing confirmed crotamine identity. Crotamine demonstrated no toxicity and did not inhibit migration in HUVEC cells. Although no cell death occurred in DU-145 cells, crotamine inhibited their migration. Thus, crotamine presented potential to be a prototype of anticancer drug.


Asunto(s)
Antineoplásicos , Movimiento Celular , Venenos de Crotálidos , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Antineoplásicos/farmacología , Crotalus , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Animales
17.
BMC Physiol ; 13: 11, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24099482

RESUMEN

BACKGROUND: The alkaline version of the single-cell gel (comet) assay is a useful method for quantifying DNA damage. Although some studies on chronic and acute effects of exercise on DNA damage measured by the comet assay have been performed, it is unknown if an aerobic training protocol with intensity, volume, and load clearly defined will improve performance without leading to peripheral blood cell DNA damage. In addition, the effects of overtraining on DNA damage are unknown. Therefore, this study aimed to examine the effects of aerobic training and overtraining on DNA damage in peripheral blood and skeletal muscle cells in Swiss mice. To examine possible changes in these parameters with oxidative stress, we measured reduced glutathione (GSH) levels in total blood, and GSH levels and lipid peroxidation in muscle samples. RESULTS: Performance evaluations (i.e., incremental load and exhaustive tests) showed significant intra and inter-group differences. The overtrained (OTR) group showed a significant increase in the percentage of DNA in the tail compared with the control (C) and trained (TR) groups. GSH levels were significantly lower in the OTR group than in the C and TR groups. The OTR group had significantly higher lipid peroxidation levels compared with the C and TR groups. CONCLUSIONS: Aerobic and anaerobic performance parameters can be improved in training at maximal lactate steady state during 8 weeks without leading to DNA damage in peripheral blood and skeletal muscle cells or to oxidative stress in skeletal muscle cells. However, overtraining induced by downhill running training sessions is associated with DNA damage in peripheral blood and skeletal muscle cells, and with oxidative stress in skeletal muscle cells and total blood.


Asunto(s)
Células Sanguíneas/metabolismo , Daño del ADN , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/efectos adversos , Animales , Glutatión/química , Masculino , Ratones , Estrés Oxidativo , Sustancias Reactivas al Ácido Tiobarbitúrico/química
18.
J Toxicol Environ Health A ; 76(6): 345-53, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23557233

RESUMEN

The chemotherapeutic agent cisplatin (cDDP) is widely used to treat a variety of solid and hematological tumors. However, cDDP exerts severe side effects, such as nephrotoxicity, neurotoxicity, and bone-marrow suppression. The use of some dietary compounds to protect organs that are not targets in association with chemotherapy has been encouraged. This study evaluated the protective effects of chlorophyll b (CLb) on DNA damage induced by cDDP by use of single-cell gel electrophoresis (SCGE) assays. Further, this investigation also determined platinum (Pt) and magnesium (Mg) bioaccumulation in mice tissues after treatment with CLb alone and/or in association of cDDP (simultaneous treatment) by inductively coupled plasma-mass spectroscopy (ICP-MS). All parameters were studied in peripheral blood cells (PBC), kidneys, and liver of mice after administration of CLb (0.2 or 0.5 mg/kg of body weight [b.w.]), cDDP (6 mg/kg b.w.), and the combination CLb 0.2 plus cDDP or CLb 0.5 plus cDDP. Pt accumulation in liver and kidneys was higher than that found in PBC, while DNA damage was higher in kidneys and liver than in PBC. Further, treatment with CLb alone did not induce DNA damage. Evidence indicates that genotoxic effects produced by cDDP may not be related to Pt accumulation and distribution. In combined treatments, CLb decreased DNA damage in tissues, but the PT contents did not change and these treatments also showed that CLb may be an important source of Mg. Thus, our results indicate that consumption of CLb-rich foods may diminish the adverse health effects induced by cDDP exposure.


Asunto(s)
Antimutagênicos/farmacología , Antineoplásicos/toxicidad , Clorofila/farmacología , Cisplatino/toxicidad , Daño del ADN/efectos de los fármacos , Animales , Antineoplásicos/farmacocinética , Cisplatino/farmacocinética , Ensayo Cometa , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Compuestos de Magnesio/metabolismo , Masculino , Ratones , Compuestos de Platino/metabolismo
19.
Nutrients ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375646

RESUMEN

Prostate cancer ranks second in incidence worldwide. To date, there are no available therapies to effectively treat advanced and metastatic prostate cancer. Sulforaphane and vitamin D alone are promising anticancer agents in vitro and in vivo, but their low bioavailability has limited their effects in clinical trials. The present study examined whether sulforaphane combined with vitamin D at clinically relevant concentrations improved the cytotoxicity of the compounds alone towards DU145 and PC-3 human prostate tumor cells. To assess the anticancer activity of this combination, we analyzed cell viability (MTT assay), oxidative stress (CM-H2DCFDA), autophagy (fluorescence), DNA damage (comet assay), and protein expression (Western blot). The sulforaphane-vitamin D combination (i) decreased cell viability, induced oxidative stress, DNA damage, and autophagy, upregulated BAX, CASP8, CASP3, JNK, and NRF2 expression, and downregulated BCL2 expression in DU145 cells; and (ii) decreased cell viability, increased autophagy and oxidative stress, upregulated BAX and NRF2 expression, and downregulated JNK, CASP8, and BCL2 expression in PC-3 cells. Therefore, sulforaphane and vitamin D in combination have a potential application in prostate cancer therapy, and act to modulate the JNK/MAPK signaling pathway.


Asunto(s)
Neoplasias de la Próstata , Vitamina D , Masculino , Humanos , Vitamina D/farmacología , Proteína X Asociada a bcl-2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Apoptosis , Estrés Oxidativo , Neoplasias de la Próstata/metabolismo , Vitaminas/farmacología , Autofagia , Daño del ADN , Línea Celular Tumoral
20.
Plant Foods Hum Nutr ; 67(2): 171-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22562095

RESUMEN

This study investigated the in vivo genotoxicity of piquiá pulp (Caryocar villosum) and its potential antigenotoxicity on doxorubicin (DXR)-induced DNA damage by comet assay and micronucleus test. In addition, the phytochemicals present in piquiá pulp were determined. Piquiá fruit pulp (75, 150 or 300 mg/kg b.w.) was administered by gavage to Wistar rats for 14 days, and the animals received an injection of saline or DXR (15 mg/kg b.w., i.p.) 24 h before they were euthanized. The phytochemical analysis revealed the presence of carotenoids; phenolic compounds, including flavonoids; tannins and α-tocopherol in piquiá pulp. No statistically significant differences were observed in the evaluated parameters, demonstrating the absence of cytotoxic and genotoxic effects of piquiá pulp at all tested doses. In liver, kidney, cardiac and bone marrow cells, piquiá significantly reduced the DNA damage induced by DXR. Our results showed that the lowest piquiá dose caused the largest decrease in DNA damage and the highest dose caused the smallest decrease, demonstrating an inverse dose-response of piquiá pulp. Furthermore, we observed a difference in the potential antigenotoxic effects in several tissues. In conclusion, our results demonstrated that piquiá pulp was not genotoxic and inhibited the genotoxicity induced by DXR, but some of the protective effects that were observed depended on the doses and experimental conditions. Therefore, further investigations are needed to clarify how piquiá pulp positively affects human health.


Asunto(s)
Antimutagênicos/farmacología , Ericales/química , Frutas/química , Extractos Vegetales/farmacología , Animales , Ensayo Cometa/métodos , Daño del ADN/efectos de los fármacos , Doxorrubicina/toxicidad , Flavonoides/análisis , Flavonoides/farmacología , Corazón/efectos de los fármacos , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Pruebas de Micronúcleos/métodos , Ratas , Ratas Wistar , Taninos/análisis , Taninos/farmacología , alfa-Tocoferol/análisis , alfa-Tocoferol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA