Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Pulm Med ; 15: 85, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26264367

RESUMEN

BACKGROUND: Previously, we showed that treatment with the Rho-kinase inhibitor Y-27632 was able to control airway responsiveness, inflammation, remodeling, and oxidative stress in an animal model of asthma, suggesting that this drug is beneficial in asthma. However, studies evaluating the effects of these inhibitors in conjunction with corticosteroids on chronic pulmonary inflammation have not been conducted. Therefore, we evaluated the effects of treatment with the Rho-kinase inhibitor Y-27632, with or without concurrent dexamethasone treatment, on airway and lung tissue mechanical responses, inflammation, extracellular matrix remodeling, and oxidative stress in guinea pigs with chronic allergic inflammation. METHODS: The guinea pigs were subjected to seven ovalbumin or saline inhalation exposures. Treatment with Y-27632 (1 mM) and dexamethasone (2 mg/kg) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the pulmonary mechanics were evaluated and exhaled nitric oxide (ENO) levels were determined. The lungs were removed and histological analysis was performed using morphometry. RESULTS: The treatment of guinea pigs with the Rho-kinase inhibitor and dexamethasone (ORC group) decreased ENO, the maximal mechanical responses after antigen challenge, inflammation, extracellular matrix remodeling and oxidative stress in the lungs. This therapeutic strategy reduced the levels of collagen and IFN-γ in the airway walls, as well as IL-2, IFN-γ, 8-iso-PGF2α and NF-κB in the distal parenchyma, when compared to isolated treatment with corticosteroid or Rho-kinase inhibitor (P < 0.05) and reduced the number of TIMP-1-positive cells and eosinophils in the alveolar septa compared to corticosteroid-treated animals (P < 0.05). The combined treatment with the Rho-kinase inhibitor and the corticosteroid provided maximal control over the remodeling response and inflammation in the airways and parenchyma. CONCLUSIONS: Rho-kinase inhibition, alone or in combination with corticosteroids, can be considered a future pharmacological tool for the control of asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Amidas/farmacología , Asma/tratamiento farmacológico , Glucocorticoides/farmacología , Inflamación/tratamiento farmacológico , Piridinas/farmacología , Animales , Asma/patología , Asma/fisiopatología , Enfermedad Crónica , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Cobayas , Inflamación/patología , Inflamación/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología
2.
Bioeng Transl Med ; 8(2): e10401, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925690

RESUMEN

Silicosis is an irreversible and progressive fibrotic lung disease caused by massive inhalation of crystalline silica dust at workplaces, affecting millions of industrial workers worldwide. A tyrosine kinase inhibitor, nintedanib (NTB), has emerged as a potential silicosis treatment due to its inhibitory effects on key signaling pathways that promote silica-induced pulmonary fibrosis. However, chronic and frequent use of the oral NTB formulation clinically approved for treating other fibrotic lung diseases often results in significant side effects. To this end, we engineered a nanocrystal-based suspension formulation of NTB (NTB-NS) possessing specific physicochemical properties to enhance drug retention in the lung for localized treatment of silicosis via inhalation. Our NTB-NS formulation was prepared using a wet-milling procedure in presence of Pluronic F127 to endow the formulation with nonadhesive surface coatings to minimize interactions with therapy-inactivating delivery barriers in the lung. We found that NTB-NS, following intratracheal administration, provided robust anti-fibrotic effects and mechanical lung function recovery in a mouse model of silicosis, whereas a 100-fold greater oral NTB dose given with a triple dosing frequency failed to do so. Importantly, several key pathological phenotypes were fully normalized by NTB-NS without displaying notable local or systemic adverse effects. Overall, NTB-NS may open a new avenue for localized treatment of silicosis and potentially other fibrotic lung diseases.

3.
J Appl Physiol (1985) ; 132(2): 564-574, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34989651

RESUMEN

The time-controlled adaptive ventilation (TCAV) method attenuates lung damage in acute respiratory distress syndrome. However, so far, no study has evaluated the impact of the TCAV method on ventilator-induced lung injury (VILI) and cardiac function in emphysema. We hypothesized that the use of the TCAV method to achieve an expiratory flow termination/expiratory peak flow (EFT/EPF) of 25% could reduce VILI and improve right ventricular function in elastase-induced lung emphysema in rats. Five weeks after the last intratracheal instillation of elastase, animals were anesthetized and mechanically ventilated for 1 h using TCAV adjusted to either EFT/EPF 25% or EFT/EPF 75%, the latter often applied in acute respiratory distress syndrome (ARDS). Pressure-controlled ventilation (PCV) groups with positive end-expiratory pressure levels similar to positive end-release pressure in TCAV with EFT/EPF 25% and EFT/EPF 75% were also analyzed. Echocardiography and lung ultrasonography were monitored. Lung morphometry, alveolar heterogeneity, and biological markers related to inflammation [interleukin 6 (IL-6), CINC-1], alveolar pulmonary stretch (amphiregulin), lung matrix damage [metalloproteinase 9 (MMP-9)] were assessed. EFT/EPF 25% reduced respiratory system peak pressure, mean linear intercept, B lines at lung ultrasonography, and increased pulmonary acceleration time/pulmonary ejection time ratio compared with EFT/EPF 75%. The volume fraction of mononuclear cells, neutrophils, and expression of IL-6, CINC-1, amphiregulin, and MMP-9 were lower with EFT/EPF 25% than with EFT/EPF 75%. In conclusion, TCAV with EFT/EPF 25%, compared with EFT/EPF 75%, led to less lung inflammation, hyperinflation, and pulmonary arterial hypertension, which may be a promising strategy for patients with emphysema.NEW & NOTEWORTHY The TCAV method reduces lung damage in ARDS. However, so far, no study has evaluated the impact of the TCAV method on ventilator-induced lung injury and cardiac function in experimental emphysema. The TCAV method at EFT/EPF ratio of 25%, compared with EFT/EPF of 75% (frequently used in ARDS), reduced lung inflammation, alveolar heterogeneity and hyperinflation, and pulmonary arterial hypertension in elastase-induced emphysema. TCAV may be a promising and personalized ventilation strategy for patients with emphysema.


Asunto(s)
Enfisema , Enfisema Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Enfisema/metabolismo , Humanos , Pulmón/metabolismo , Respiración con Presión Positiva/métodos , Enfisema Pulmonar/metabolismo , Ratas , Respiración Artificial/métodos , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo
4.
Intensive Care Med Exp ; 10(1): 53, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36529842

RESUMEN

BACKGROUND: Sedatives and mild hypothermia alone may yield neuroprotective effects in acute ischemic stroke (AIS). However, the impact of this combination is still under investigation. We compared the effects of the combination of mild hypothermia or normothermia with propofol or dexmedetomidine on brain, lung, and kidney in experimental AIS. AIS-induced Wistar rats (n = 30) were randomly assigned, after 24 h, to normothermia or mild hypothermia (32-35 °C) with propofol or dexmedetomidine. Histologic injury score and molecular biomarkers were evaluated not only in brain, but also in lung and kidney. Hemodynamics, ventilatory parameters, and carotid Doppler ultrasonography were analyzed for 60 min. RESULTS: In brain: (1) hypothermia compared to normothermia, regardless of sedative, decreased tumor necrosis factor (TNF)-α expression and histologic injury score; (2) normothermia + dexmedetomidine reduced TNF-α and histologic injury score compared to normothermia + propofol; (3) hypothermia + dexmedetomidine increased zonula occludens-1 expression compared to normothermia + dexmedetomidine. In lungs: (1) hypothermia + propofol compared to normothermia + propofol reduced TNF-α and histologic injury score; (2) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine reduced histologic injury score. In kidneys: (1) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine decreased syndecan expression and histologic injury score; (2) hypothermia + dexmedetomidine compared to hypothermia + propofol decreased histologic injury score. CONCLUSIONS: In experimental AIS, the combination of mild hypothermia with dexmedetomidine reduced brain, lung, and kidney damage.

5.
Physiol Rep ; 10(17): e15429, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36065867

RESUMEN

Optimal fluid management is critical during mechanical ventilation to mitigate lung damage. Under normovolemia and protective ventilation, pulmonary tensile stress during pressure-support ventilation (PSV) results in comparable lung protection to compressive stress during pressure-controlled ventilation (PCV) in experimental acute lung injury (ALI). It is not yet known whether tensile stress can lead to comparable protection to compressive stress in ALI under a liberal fluid strategy (LF). A conservative fluid strategy (CF) was compared with LF during PSV and PCV on lungs and kidneys in an established model of ALI. Twenty-eight male Wistar rats received endotoxin intratracheally. After 24 h, they were treated with CF (minimum volume of Ringer's lactate to maintain normovolemia and mean arterial pressure ≥70 mmHg) or LF (~4 times higher than CF) combined with PSV or PCV (VT  = 6 ml/kg, PEEP = 3 cmH2 O) for 1 h. Nonventilated animals (n = 4) were used for molecular biology analyses. CF-PSV compared with LF-PSV: (1) decreased the diffuse alveolar damage score (10 [7.8-12] vs. 25 [23-31.5], p = 0.006), mainly due to edema in axial and alveolar parenchyma; (2) increased birefringence for occludin and claudin-4 in lung tissue and expression of zonula-occludens-1 and metalloproteinase-9 in lung. LF compared with CF reduced neutrophil gelatinase-associated lipocalin and interleukin-6 expression in the kidneys in PSV and PCV. In conclusion, CF compared with LF combined with PSV yielded less lung epithelial cell damage in the current model of ALI. However, LF compared with CF resulted in less kidney injury markers, regardless of the ventilatory strategy.


Asunto(s)
Lesión Pulmonar Aguda , Lesión Pulmonar Aguda/terapia , Animales , Riñón , Pulmón , Masculino , Ratas , Ratas Wistar , Respiración Artificial/métodos , Volumen de Ventilación Pulmonar
6.
Pharmacol Res Perspect ; 9(5): e00873, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34632734

RESUMEN

We hypothesized whether propofol or active propofol component (2,6-diisopropylphenol [DIPPH] and lipid excipient [LIP-EXC]) separately may alter inflammatory mediators expressed by macrophages and neutrophils in lean and obese rats. Male Wistar rats (n = 10) were randomly assigned to receive a standard (lean) or obesity-inducing diet (obese) for 12 weeks. Animals were euthanized, and alveolar macrophages and neutrophils from lean and obese animals were exposed to propofol (50 µM), active propofol component (50 µM, 2,6-DIPPH), and lipid excipient (soybean oil, purified egg phospholipid, and glycerol) for 1 h. The primary outcome was IL-6 expression after propofol and its components exposure by alveolar macrophages extracted from bronchoalveolar lavage fluid. The secondary outcomes were the production of mediators released by macrophages from adipose tissue, and neutrophils from lung and adipose tissues, and neutrophil migration. IL-6 increased after the exposure to both propofol (median [interquartile range] 4.14[1.95-5.20]; p = .04) and its active component (2,6-DIPPH) (4.09[1.67-5.91]; p = .04) in alveolar macrophages from obese animals. However, only 2,6-DIPPH increased IL-10 expression (7.59[6.28-12.95]; p = .001) in adipose tissue-derived macrophages. Additionally, 2,6-DIPPH increased C-X-C chemokine receptor 2 and 4 (CXCR2 and CXCR4, respectively) in lung (10.08[8.23-29.01]; p = .02; 1.55[1.49-3.43]; p = .02) and adipose tissues (8.78[4.15-11.57]; p = .03; 2.86[2.17-3.71]; p = .01), as well as improved lung-derived neutrophil migration (28.00[-3.42 to 45.07]; p = .001). In obesity, the active component of propofol affected both the M1 and M2 markers as well as neutrophils in both alveolar and adipose tissue cells, suggesting that lipid excipient may hinder the effects of active propofol.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Anestésicos Intravenosos/farmacología , Excipientes/farmacología , Interleucina-6/metabolismo , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Obesidad/metabolismo , Propofol/farmacología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Quimiotaxis de Leucocito/efectos de los fármacos , Glicerol/farmacología , Interleucina-10/metabolismo , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Fosfolípidos/farmacología , Ratas , Receptores CXCR4/efectos de los fármacos , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/efectos de los fármacos , Receptores de Interleucina-8B/metabolismo , Aceite de Soja/farmacología
7.
Eur J Pharmacol ; 887: 173438, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32795515

RESUMEN

Despite advances in medical therapy, pulmonary arterial hypertension (PAH) remains an inexorably progressive and highly lethal disease. Signal transducer and activator of transcription (STAT)-3 is one of the main intracellular transcription factors implicated in PAH vascular remodeling. We hypothesized that niclosamide, a STAT3 inhibitor, would reduce vascular remodeling in an established pulmonary arterial hypertension model, thus enhancing cardiac function. Male Wistar rats were treated either with monocrotaline (60 mg/kg), to induce PAH, or saline (C group) by intraperitoneal injection. On day 14, PAH animals were randomly assigned to receive oral (1) saline (PAH-SAL); (2) niclosamide (75 mg/kg/day) (PAH-NICLO); (3) sildenafil (20 mg/kg/day) (PAH-SIL); or (4) niclosamide + sildenafil (PAH-NICLO + SIL), once daily for 14 days. On day 28, right ventricular systolic pressure was lower in all treated groups compared to PAH-SAL. Pulmonary vascular collagen content was lower in PAH-NICLO (37 ± 3%) and PAH-NICLO + SIL (37 ± 6%) compared to PAH-SAL (68 ± 4%), but not in PAH-SIL (52 ± 1%). CD-34, an endothelial cell marker, was higher, while vimentin, a mesenchymal cell marker, was lower in PAH-NICLO and PAH-NICLO + SIL compared to PAH-SAL, suggesting attenuation of endothelial-mesenchymal transition. Expression of STAT3 downstream targets such as transforming growth factor (TGF)-ß, hypoxia-inducible factor (HIF)-1, and provirus integration site for Moloney murine leukemia virus (PIM-1) in lung tissue was reduced in PAH-NICLO and PAH-NICLO + SIL compared to PAH-SAL. In conclusion, niclosamide, with or without sildenafil, mitigated vascular remodeling and improved right ventricle systolic pressure. This new role for a well-established drug may represent a promising therapy for PAH.


Asunto(s)
Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Niclosamida/uso terapéutico , Hipertensión Arterial Pulmonar/prevención & control , Remodelación Vascular/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Pulmón/patología , Masculino , Monocrotalina/toxicidad , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Niclosamida/farmacología , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/patología , Ratas , Ratas Wistar , Remodelación Vascular/fisiología
8.
Stem Cells Transl Med ; 6(3): 962-969, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28186686

RESUMEN

One-way endobronchial valves (EBV) insertion to reduce pulmonary air trapping has been used as therapy for chronic obstructive pulmonary disease (COPD) patients. However, local inflammation may result and can contribute to worsening of clinical status in these patients. We hypothesized that combined EBV insertion and intrabronchial administration of mesenchymal stromal cells (MSCs) would decrease the inflammatory process, thus mitigating EBV complications in severe COPD patients. This initial study sought to investigate the safety of this approach. For this purpose, a phase I, prospective, patient-blinded, randomized, placebo-controlled design was used. Heterogeneous advanced emphysema (Global Initiative for Chronic Lung Disease [GOLD] III or IV) patients randomly received either allogeneic bone marrow-derived MSCs (108 cells, EBV+MSC) or 0.9% saline solution (EBV) (n = 5 per group), bronchoscopically, just before insertion of one-way EBVs. Patients were evaluated 1, 7, 30, and 90 days after therapy. All patients completed the study protocol and 90-day follow-up. MSC delivery did not result in acute administration-related toxicity, serious adverse events, or death. No significant between-group differences were observed in overall number of adverse events, frequency of COPD exacerbations, or worsening of disease. Additionally, there were no significant differences in blood tests, lung function, or radiological outcomes. However, quality-of-life indicators were higher in EBV + MSC compared with EBV. EBV + MSC patients presented decreased levels of circulating C-reactive protein at 30 and 90 days, as well as BODE (Body mass index, airway Obstruction, Dyspnea, and Exercise index) and MMRC (Modified Medical Research Council) scores. Thus, combined use of EBV and MSCs appears to be safe in patients with severe COPD, providing a basis for subsequent investigations using MSCs as concomitant therapy. Stem Cells Translational Medicine 2017;6:962-969.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Enfisema Pulmonar/terapia , Válvula Pulmonar/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Proteína C-Reactiva/metabolismo , Femenino , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Persona de Mediana Edad , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/fisiopatología , Calidad de Vida , Pruebas de Función Respiratoria , Resultado del Tratamiento
9.
Respir Physiol Neurobiol ; 192: 134-46, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24373838

RESUMEN

We evaluated whether Rho-kinase inhibition (Y-27632) modulated distal lung responsiveness, inflammation, extracellular matrix remodeling and oxidative stress activation in guinea pigs (GPs) with chronic allergic inflammation. GPs were submitted to inhalation of ovalbumin (OVA-2×/week/4 weeks). From the 5th inhalation on, the Rho-kinase inhibitor group animals were submitted to Y-27632 inhalation 10min before each inhalation of OVA. Seventy-two hours after the seventh inhalation, the oscillatory mechanics of the distal lung strips were assessed under the baseline condition and after the ovalbumin challenge. Subsequently, the lung slices were submitted to morphometry. Rho-kinase inhibition in the ovalbumin-exposed animals attenuated distal lung elastance and resistance, eosinophils, IL-2, IL-4, IL-5, IL-13, TIMP-1, MMP-9, TGF-ß, IFN-γ, NF-κB and iNOS-positive cells and the volume fraction of 8-iso-PGF2α, elastic, collagen and actin in alveolar walls compared with the OVA group (P<0.05). Rho-kinase inhibition contributed to the control of distal lung responsiveness, eosinophilic and Th1/Th2 responses and extracellular matrix remodeling in an animal model of chronic allergic inflammation.


Asunto(s)
Pulmón/enzimología , Neumonía/patología , Quinasas Asociadas a rho/metabolismo , Administración por Inhalación , Amidas/administración & dosificación , Análisis de Varianza , Animales , Enfermedad Crónica , Citocinas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Cobayas , Inmunoglobulina G/uso terapéutico , Masculino , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ovalbúmina/efectos adversos , Neumonía/etiología , Neumonía/prevención & control , Piridinas/administración & dosificación , Estrés Mecánico , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
10.
Respir Physiol Neurobiol ; 189(3): 614-23, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23928268

RESUMEN

We analyzed the effects of different administration routes and application times of the BCG-Moreau strain on airway and lung inflammation and remodeling in a murine model of allergic asthma. BALB/c mice (n=168) were divided into two groups. The first group received BCG-Moreau strain while the second group received saline using the same protocol. BCG or saline were intradermally or intranasally injected one or two months before the induction of asthma. Mice were further sensitized and challenged with ovalbumin or received saline. Twenty-four hours after the last challenge, BCG prevented the triggering of pro-inflammatory cytokines, probably by increasing Foxp3 and interleukin (IL)-10, modulating eosinophil infiltration and collagen fiber deposition, thus reducing airway hyperresponsiveness. In conclusion, BCG-Moreau prevented lung remodeling in the present model of allergic asthma, regardless of administration route and time of vaccination. These beneficial effects may be related to the increase in regulatory T cells and to IL-10 production in tandem with decreased Th2 cytokines (IL-4, IL-5, and IL-13).


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Asma , Vacuna BCG/uso terapéutico , Pulmón/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Animales , Animales Recién Nacidos , Asma/inmunología , Asma/patología , Asma/prevención & control , Vacuna BCG/farmacología , Líquido del Lavado Bronquioalveolar , Broncoconstricción/efectos de los fármacos , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Pulmón/patología , Pulmón/fisiopatología , Pulmón/ultraestructura , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Respiración con Presión Positiva , Músculos Respiratorios/patología , Músculos Respiratorios/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA