Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(32): e2216141120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523525

RESUMEN

Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.


Asunto(s)
Proteínas de Caenorhabditis elegans , Sulfuro de Hidrógeno , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad , Sulfuros/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Factores de Transcripción GATA/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627403

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfuro de Hidrógeno/farmacología , Mitocondrias Musculares/efectos de los fármacos , Morfolinas/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Compuestos Organotiofosforados/farmacología , Tionas/farmacología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Distrofina/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Sulfuro de Hidrógeno/metabolismo , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos mdx , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Compuestos Organofosforados/metabolismo , Compuestos Organotiofosforados/metabolismo , Prednisona/farmacología , Sirtuinas/genética , Sirtuinas/metabolismo , Tionas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Utrofina/deficiencia , Utrofina/genética
3.
Life (Basel) ; 13(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36676149

RESUMEN

The model organism Caenorhabditis elegans is used in a variety of applications ranging from fundamental biological studies, to drug screening, to disease modeling, and to space-biology investigations. These applications rely on conducting whole-organism phenotypic assays involving animal behavior and locomotion. In this study, we report a 3D printed compact imaging platform (CIP) that is integrated with a smart-device camera for the whole-organism phenotyping of C. elegans. The CIP has no external optical elements and does not require mechanical focusing, simplifying the optical configuration. The small footprint of the system powered with a standard USB provides capabilities ranging from plug-and-play, to parallel operation, and to housing it in incubators for temperature control. We demonstrate on Earth the compatibility of the CIP with different C. elegans substrates, including agar plates, liquid droplets on glass slides and microfluidic chips. We validate the system with behavioral and thrashing assays and show that the phenotypic readouts are in good agreement with the literature data. We conduct a pilot study with mutants and show that the phenotypic data collected from the CIP distinguishes these mutants. Finally, we discuss how the simplicity and versatility offered by CIP makes it amenable to future C. elegans investigations on the International Space Station, where science experiments are constrained by system size, payload weight and crew time. Overall, the compactness, portability and ease-of-use makes the CIP desirable for research and educational outreach applications on Earth and in space.

4.
Cells ; 12(20)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887314

RESUMEN

Background: Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. Methods: We employed the worm Caenorhabditis elegans as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and dys-1 (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Results: Neuromuscular strength was lower in flight versus ground controls (16.6% decline, p < 0.05), with dys-1 significantly more (23% less strength, p < 0.01) affected than wild types. The transcriptional gene ontology signatures characterizing both strains of weaker animals in flight strongly corroborate previous results across species, enriched for upregulated stress response pathways and downregulated mitochondrial and cytoskeletal processes. Functional gene cluster analysis extended this to implicate decreased neuronal function, including abnormal calcium handling and acetylcholine signaling, in space-induced strength declines under the predicted control of UNC-89 and DAF-19 transcription factors. Finally, gene modules specifically altered in dys-1 animals in flight again cluster to neuronal/neuromuscular pathways, suggesting strength loss in DMD comprises a strong neuronal component that predisposes these animals to exacerbated strength loss in space. Conclusions: Highly reproducible gene signatures are strongly associated with space-induced neuromuscular strength loss across species and neuronal changes in calcium/acetylcholine signaling require further study. These results promote targeted medical efforts towards and provide an in vivo model for safely sending animals and people into deep space in the near future.


Asunto(s)
Proteínas de Caenorhabditis elegans , Vuelo Espacial , Humanos , Animales , Caenorhabditis elegans/metabolismo , Acetilcolina/metabolismo , Calcio/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Distrofina/genética
5.
NPJ Microgravity ; 8(1): 50, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344513

RESUMEN

Caenorhabditis elegans is a low-cost genetic model that has been flown to the International Space Station to investigate the influence of microgravity on changes in the expression of genes involved in muscle maintenance. These studies showed that genes that encode muscle attachment complexes have decreased expression under microgravity. However, it remains to be answered whether the decreased expression leads to concomitant changes in animal muscle strength, specifically across multiple generations. We recently reported the NemaFlex microfluidic device for the measurement of muscle strength of C. elegans (Rahman et al., Lab Chip, 2018). In this study, we redesign our original NemaFlex device and integrate it with flow control hardware for spaceflight investigations considering mixed animal culture, constraints on astronaut time, crew safety, and on-orbit operations. The technical advances we have made include (i) a microfluidic device design that allows animals of a given size to be sorted from unsynchronized cultures and housed in individual chambers, (ii) a fluid handling protocol for injecting the suspension of animals into the microfluidic device that prevents channel clogging, introduction of bubbles, and crowding of animals in the chambers, and (iii) a custom-built worm-loading apparatus interfaced with the microfluidic device that allows easy manipulation of the worm suspension and prevents fluid leakage into the surrounding environment. Collectively, these technical advances enabled the development of new microfluidics-integrated hardware for spaceflight studies in C. elegans. Finally, we report Earth-based validation studies to test this new hardware, which has led to it being flown to the International Space Station.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA