Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 206(4): 134, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433145

RESUMEN

Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05-0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.


Asunto(s)
Acanthamoeba castellanii , Micelas , Humanos , Itraconazol/farmacología , Alquinos , Polímeros
2.
Parasitol Res ; 123(2): 117, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294565

RESUMEN

The free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.


Asunto(s)
Acanthamoeba castellanii , Amebiasis , Amebicidas , Quistes , Humanos , Lactasa , Galactosa , Soluciones para Lentes de Contacto , Genotipo , Glucosa , Diferenciación Celular
3.
AAPS PharmSciTech ; 25(3): 60, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472523

RESUMEN

The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.


Asunto(s)
COVID-19 , Vacunas de ADN , Animales , Humanos , Ratones , SARS-CoV-2 , Epítopos de Linfocito T , Ratones Endogámicos BALB C , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Péptidos , Anticuerpos Antivirales
4.
Int Ophthalmol ; 44(1): 140, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491335

RESUMEN

Keratitis is corneal inflammatory disease which may be caused by several reason such as an injury, allergy, as well as a microbial infection. Besides these, overexposure to ultraviolet light and unhygienic practice of contact lenses are also associated with keratitis. Based on the cause of keratitis, different lines of treatments are recommended. Photodynamic therapy is a promising approach that utilizes light activated compounds to instigate either killing or healing mechanism to treat various diseases including both communicable and non-communicable diseases. This review focuses on clinically-important patent applications and the recent literature for the use of photodynamic therapy against keratitis.


Asunto(s)
Lentes de Contacto , Enfermedades de la Córnea , Queratitis , Fotoquimioterapia , Humanos , Queratitis/tratamiento farmacológico , Queratitis/etiología , Córnea , Enfermedades de la Córnea/complicaciones , Fotoquimioterapia/efectos adversos
5.
Arch Microbiol ; 205(12): 360, 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37898989

RESUMEN

Acanthamoeba castellanii is the causative agent of fatal encephalitis and blinding keratitis. Current therapies remain a challenge, hence there is a need to search for new therapeutics. Here, we tested embelin (EMB) and silver nanoparticles doped with embelin (EMB-AgNPs) against A. castellanii. Using amoebicidal assays, the results revealed that both compounds inhibited the viability of Acanthamoeba, having an IC50 of 27.16 ± 0.63 and 13.63 ± 1.08 µM, respectively, while causing minimal cytotoxicity against HaCaT cells in vitro. The findings suggest that both samples induced apoptosis through the mitochondria-mediated pathway. Differentially expressed genes analysis showed that 652 genes were uniquely expressed in treated versus untreated cells, out of which 191 were significantly regulated in the negative control vs. conjugate. Combining the analysis, seven genes (ARIH1, RAP1, H3, SDR16C5, GST, SRX1, and PFN) were highlighted as the most significant (Log2 (FC) value ± 4) for the molecular mode of action in vitro. The KEGG analysis linked most of the genes to apoptosis, the oxidative stress signaling pathway, cytochrome P450, Rap1, and the oxytocin signaling pathways. In summary, this study provides a thorough framework for developing therapeutic agents against microbial infections using EMB and EMB-AgNPs.


Asunto(s)
Acanthamoeba castellanii , Nanopartículas del Metal , Plata/farmacología , Apoptosis
6.
Int Microbiol ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015290

RESUMEN

Acanthamoeba are free living amoebae that are the causative agent of keratitis and granulomatous amoebic encephalitis. Alpha-Mangostin (AMS) is a significant xanthone; that demonstrates a wide range of biological activities. Here, the anti-amoebic activity of α-Mangostin and its silver nano conjugates (AMS-AgNPs) were evaluated against pathogenic A. castellanii trophozoites and cysts in vitro. Amoebicidal assays showed that both AMS and AMS-AgNPs inhibited the viability of A. castellanii dose-dependently, with an IC50 of 88.5 ± 2.04 and 20.2 ± 2.17 µM, respectively. Both formulations inhibited A. castellanii-mediated human keratinocyte cell cytopathogenicity. Functional assays showed that both samples caused apoptosis through the mitochondrial pathway and reduced mitochondrial membrane potential and ATP production, while increasing reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome-c reductase in the cytosol. Whole transcriptome sequencing of A. castellanii showed the expression of 826 genes, with 447 genes being up-regulated and 379 genes being down-regulated post treatment. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority of genes were linked to apoptosis, autophagy, RAP1, AGE-RAGE and oxytocin signalling pathways. Seven genes (PTEN, H3, ARIH1, SDR16C5, PFN, glnA GLUL, and SRX1) were identified as the most significant (Log2 (FC) value 4) for molecular mode of action in vitro. Future in vivo studies with AMS and nanoconjugates are needed to realize the clinical potential of this work.

7.
World J Microbiol Biotechnol ; 39(12): 330, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792153

RESUMEN

With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.


Asunto(s)
Antiinfecciosos , Disolventes Eutécticos Profundos , Solventes , Antiinfecciosos/farmacología , Bacterias , Hongos
8.
Med Res Rev ; 42(1): 462-512, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34472107

RESUMEN

Acanthamoeba is a genus of free-living amoebae, pervasively found in the environment. Most of its pathogenic species are the causative agent of sight-threatening Acanthamoeba keratitis and fatal granulomatous amoebic encephalitis. Despite the advancements in the field of chemotherapy, treating Acanthamoeba infections is still challenging due to incomplete knowledge of the complicated pathophysiology. In case of infection, the treatment regimen for the patients is often ineffective due to delayed diagnosis, poor specificity, and side-effects. Besides the resistance of Acanthamoeba cysts to most of the drugs, the recurrence of infection further complicates the recovery. Thus, it is necessary to develop an effective treatment which can eradicate these rare, but serious infections. Based on various computational and in vitro studies, it has been established that the synthetic scaffolds such as heterocyclic compounds may act as potential drug leads for the development of antiamoebic drugs. In this review, we report different classes of synthetic compounds especially heterocyclic compounds which have shown promising results against Acanthamoeba. Moreover, the antiamoebic activities of synthetic compounds with their possible mode of actions against Acanthamoeba, have been summarized and discussed in this review.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Amebiasis , Queratitis por Acanthamoeba/tratamiento farmacológico , Amebiasis/tratamiento farmacológico , Química Farmacéutica , Descubrimiento de Drogas , Humanos
9.
Int Microbiol ; 25(2): 225-235, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34368912

RESUMEN

Pathogenic free-living amoebae are known to cause fatal central nervous system infections with extremely high mortality rates. High selectivity of the blood-brain barrier hampers delivery of drugs and untargeted delivery of drugs can cause severe side effects. Nanovehicles can be used for targeted drug delivery across the blood-brain barrier. Inorganic nanoparticles have been explored as carriers for various biomedical applications and can be modified with various ligands for efficient targeting and cell selectivity while lipid-based nanoparticles have been extensively used in the development of both precision and colloidal nanovehicles. Nanomicelles and polymeric nanoparticles can also serve as nanocarriers and may be modified so that responsiveness of the nanoparticles and release of the loads are linked to specific stimuli. These nanoparticles are discussed here in the context of the treatment of central nervous system infections due to pathogenic amoebae. It is anticipated that these novel strategies can be utilized in tandem with novel drug leads currently in the pipeline and yield in the development of much needed treatments against these devastating parasites.


Asunto(s)
Amoeba , Naegleria fowleri , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos
10.
Bioorg Med Chem Lett ; 67: 128731, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421577

RESUMEN

Chemo-resistant cancer cells acquire robust growth potential through cell signaling mechanisms such as the down-regulation of tumor suppressors and the up-regulation of pro-survival proteins, respectively. To overcome chemo-resistance of cancer, small molecule drugs that interact with the cell signaling proteins to enhance sensitization of cancer cells toward cancer therapies are likely to be effective for the treatment of chemo-drug resistant cancer. To identify high potency small molecules, a series of ten novel phenylquinazoline derivatives were synthesized to determine their cellular effects in MCF-7 and MCF-7- cisplatin-resistant (CR) human breast cancer cells which led to the identification of two bioactive compounds, SMS-IV-20 and SMS-IV-40, that exhibited an elevated level of cytotoxicity against the human breast cancer cells and spheroid cells. In addition, both compounds enhanced chemo-sensitization of the human breast cancer cells that were genetically engineered to express the tumor suppressor and pro-apoptotic proteins, MOAP-1, Bax, and RASSF1a (MBR), suggesting that the compounds interact with the MBR signaling pathway. Furthermore, when MCF-7-CR cells were treated with SMS-IV-20 and SMS-IV-40 in the presence of ABT-737, a BCL-XL and BCL-2 inhibitor, enhanced chemo-sensitization was observed, suggesting SMS-IV-20 and SMS-IV-40 exert antagonistic activity to regulate the functional activity of BCL-2 and BCL-XL. Western blot analysis showed that both SMS-IV-20 and SMS-IV-40 induced down-regulation of BCL-2 or both BCl-2 and BCL-XL expression, respectively while promoting the release of mitochondrial Cytochrome C. Taken together, the data showed that SMS-IV-20 and SMS-IV-40 are potent activators of apoptosis that enhance chemo-sensitization through their antagonistic actions on the pro-survival activity of the BCl-2 family in human cancer cells.


Asunto(s)
Neoplasias de la Mama , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo
11.
Appl Microbiol Biotechnol ; 106(8): 3279-3291, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35403857

RESUMEN

Brain-eating amoebae, including Acanthamoeba castellanii and Naegleria fowleri, are the causative agents of devastating central nervous system infections with extreme mortality rates. There is an indisputable urgency for the development of effective chemotherapeutic agents for the control of these diseases that are increasing in incidence. Here, we evaluated the anti-amoebic potential of polyaniline:tungsten disulphide (PANI:WS2) nanocomposite against the infective trophozoite and cyst stages of N. fowleri and A. castellanii. Throughout these evaluations, significant viability inhibition was noted when 100 µg/mL of PANI:WS2 was employed at its 1:5 formulation. These effects were studied to be due to increased levels of reactive oxygen species (ROS) as visualised through fluorescence microscopy. Furthermore, field emission scanning electron microscopy (FE-SEM) analysis pictured disruption to amoeba morphology. The host-cell cytotoxicity of the nanocomposite (PANI:WS2) was studied to be negligible, making it an attractive avenue in the pursuit for effective treatments for brain-eating amoeba infections. KEY POINTS: • Synthesis of polyaniline:tungsten disulphide (PANI:WS2) nanocomposite. • Anti-amoebic potential of PANI:WS2 nanocomposite. • PANI:WS2 nanocomposites are promising anti-amoebic agents in vitro.


Asunto(s)
Nanopartículas del Metal , Naegleria fowleri , Compuestos de Anilina , Encéfalo , Sulfuros , Compuestos de Tungsteno
12.
Chemotherapy ; 67(3): 183-192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34724675

RESUMEN

BACKGROUND: Acanthamoeba castellanii is a pathogenic free-living amoeba responsible for blinding keratitis and fatal granulomatous amoebic encephalitis. However, treatments are not standardized but can involve the use of amidines, biguanides, and azoles. OBJECTIVES: The aim of this study was to synthesize a variety of synthetic tetrazole derivatives and test their activities against A. castellanii. METHODS: A series of novel tetrazole compounds were synthesized by one-pot method and characterized by NMR and mass spectroscopy. These compounds were subjected to amoebicidal and cytotoxicity assays against A. castellanii belonging to the T4 genotype and human keratinocyte skin cells, respectively. Additionally, reactive oxygen species determination and electron microscopy studies were carried out. Furthermore, two of the seven compounds were conjugated with silver nanoparticles to study their anti-amoebic potential. RESULTS: A series of seven tetrazole derivatives were synthesized successfully. The selected tetrazoles showed anti-amoebic activities at 10 µM concentration against A. castellanii in vitro. The compounds tested caused increased reactive oxygen species generation in A. castellanii and morphological damage to amoebal membranes. Moreover, conjugation of silver nanoparticles enhanced anti-amoebic effects of two tetrazoles. CONCLUSIONS: The results showed that azole compounds hold promise in the development of new formulations of anti-Acanthamoebic agents.


Asunto(s)
Acanthamoeba castellanii , Nanopartículas del Metal , Acanthamoeba castellanii/genética , Genotipo , Humanos , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno , Plata/química , Plata/farmacología , Tetrazoles/farmacología
13.
Mar Drugs ; 20(8)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36005538

RESUMEN

Neuroinflammation is an inflammatory response in any part of the central nervous system triggered by the activation of microglia and astrocytes to produce proinflammatory cytokines in the brain. However, overproduction of proinflammatory cytokines further contributes to the development of neurodegenerative disorders. Red seaweed, Kappaphycus malesianus, is a predominant carrageenophyte commercially cultivated in Semporna, Sabah, Malaysia. It is an important source of raw material for kappa-carrageenan productions in the food, pharmaceutical and cosmetics industries. However, no studies have been conducted focusing on the antineuroinflammatory effects of K. malesianus. The aim of the present study was to investigate the effect of the antineuroinflammatory activity of K. malesianus extracts (ethyl acetate, ethanol and methanol) on lipopolysaccharide-stimulated BV2 microglia and the underlying mechanisms involved in the regulation of neuroinflammatory pathways. Extract with the most promising antineuroinflammatory activity was analyzed using liquid chromatography-mass spectrometry (LC-MS). Our results show that methanol extract has a convincing antineuroinflammatory effect by suppressing both AKT/NF-κB and ERK signaling pathways to inhibit the expression of all proinflammatory cytokines without causing a cytotoxicity effect. LC-MS analysis of methanol extract revealed two compounds: prosopinine and eplerenone. Our findings indicated that metabolites of K. malesianus are potent antineuroinflammatory agents with respect to prevention of neurological disorders.


Asunto(s)
Microglía , FN-kappa B , Citocinas/metabolismo , Humanos , Lipopolisacáridos/farmacología , Metanol , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
14.
BMC Microbiol ; 21(1): 51, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596837

RESUMEN

BACKGROUNDS: Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. RESULTS: 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 µg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. CONCLUSIONS: The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Perfilación de la Expresión Génica , Hesperidina/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Hesperidina/química , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/efectos de los fármacos , Transcriptoma
15.
Appl Microbiol Biotechnol ; 105(8): 3315-3325, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33797573

RESUMEN

BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii). RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 µg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 µg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 µg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells. CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications. KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanocompuestos , Parásitos , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Cobalto , Escherichia coli , Humanos , Pruebas de Sensibilidad Microbiana , Óxidos , Polímeros , Pirroles/farmacología , Plata/farmacología
16.
Appl Microbiol Biotechnol ; 104(7): 3121-3131, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32060693

RESUMEN

Antibiotic resistance in pathogenic bacteria is a major health challenge, as Infectious Diseases Society of America (IDSA) has recognized that the past simply drugs susceptible pathogens are now the most dangerous pathogens due to their nonstop growing resistance towards conventional antibiotics. Therefore, due to the emergence of multi-drug resistance, the bacterial infections have become a serious global problem. Acute infections feasibly develop into chronic infections because of many factors; one of them is the failure of effectiveness of antibiotics against superbugs. Modern research of two-dimensional nanoparticles and biopolymers are of great interest to attain the intricate bactericidal activity. In this study, we fabricated an antibacterial nanocomposite consisting of representative two-dimensional molybdenum disulfide (2D MoS2) nanoparticles. Polyhydroxyalkanoate (PHA) and chitosan (Ch) are used to encapsulate MoS2 nanoparticles into their matrix. This study reports the in vitro antibacterial activity and host cytotoxicity of novel PHA-Ch/MoS2 nanocomposites. PHA-Ch/MoS2 nanocomposites were subjected to time-dependent antibacterial assays at various doses to examine their antibacterial activity against multi-drug-resistant Escherichia coli K1 (Malaysian Type Culture Collection 710859) and methicillin-resistant Staphylococcus aureus (MRSA) (Malaysian Type Culture Collection 381123). Furthermore, the cytotoxicity of nanocomposites was examined against spontaneously immortalized human keratinocyte (HaCaT) cell lines. The results indicated significant antibacterial activity (p value < 0.05) against E. coli K1 and MRSA. In addition, PHA-Ch/MoS2 showed significant host cytocompatibility (p < 0.05) against HaCaT cells. The fabricated PHA-Ch/MoS2 nanocomposites have demonstrated effective antibacterial activity against both Gram-positive and -negative bacteria and exhibited better biocompatibility. Finally, PHA-Ch/MoS2 nanocomposites are shown to be suitable for antibacterial applications and also hold potential for further biomedical studies. Graphical Abstract.


Asunto(s)
Antibacterianos/farmacología , Biopolímeros/farmacología , Disulfuros/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Molibdeno/farmacología , Polihidroxialcanoatos/farmacología , Antibacterianos/química , Biopolímeros/química , Línea Celular , Quitosano/química , Disulfuros/química , Farmacorresistencia Bacteriana Múltiple/fisiología , Humanos , Nanopartículas del Metal/química , Molibdeno/química , Nanocompuestos/química , Polihidroxialcanoatos/síntesis química , Polihidroxialcanoatos/química
17.
Exp Parasitol ; 215: 107915, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32461112

RESUMEN

Acanthamoeba castellanii is an opportunistic protozoan responsible for serious human infections including Acanthamoeba keratitis and granulomatous amoebic encephalitis. Despite advances in antimicrobial therapy and supportive care, infections due to Acanthamoeba are a major public concern. Current methods of treatment are not fully effective against both the trophozoite and cyst forms of A. castellanii and are often associated with severe adverse effects, host cell cytotoxicity and recurrence of infection. Therefore, there is an urgent need to develop new therapeutic approaches for the treatment and management of Acanthamoebic infections. Repurposing of clinically approved drugs is a viable avenue for exploration and is particularly useful for neglected and rare diseases where there is limited interest by pharmaceutical companies. Nanotechnology-based drug delivery systems offer promising approaches in the biomedical field, particularly in diagnosis and drug delivery. Herein, we conjugated an antihyperglycemic drug, metformin with silver nanoparticles and assessed its anti-acanthamoebic properties. Characterization by ultraviolet-visible spectrophotometry and atomic force microscopy showed successful formation of metformin-coated silver nanoparticles. Amoebicidal and amoebistatic assays revealed that metformin-coated silver nanoparticles reduced the viability and inhibited the growth of A. castellanii significantly more than metformin and silver nanoparticles alone at both 5 and 10 µM after 24 h incubation. Metformin-coated silver nanoparticles also blocked encystation and inhibited the excystation in Acanthamoeba after 72 h incubation. Overall, the conjugation of metformin with silver nanoparticles was found to enhance its antiamoebic effects against A. castellanii. Furthermore, the pretreatment of A. castellanii with metformin and metformin-coated silver nanoparticles for 2 h also reduced the amoebae-mediated host cell cytotoxicity after 24 h incubation from 73% to 10% at 10 µM, indicating that the drug-conjugated silver nanoparticles confer protection to human cells. These findings suggest that metformin-coated silver nanoparticles hold promise in the improved treatment and management of Acanthamoeba infections.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Metformina/administración & dosificación , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Antiinfecciosos Locales/farmacología , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Clorhexidina/farmacología , Células HeLa , Humanos , Encefalitis Infecciosa/tratamiento farmacológico , Encefalitis Infecciosa/parasitología , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Microscopía de Fuerza Atómica , Enquistamiento de Parásito/efectos de los fármacos , Plata , Espectrofotometría Ultravioleta , Trofozoítos/efectos de los fármacos
18.
Exp Parasitol ; 218: 107979, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32866583

RESUMEN

Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that can cause life-threatening infections involving the central nervous system. The high mortality rates of these infections demonstrate an urgent need for novel treatment options against the amoebae. Considering that indole and thiazole compounds possess wide range of antiparasitic properties, novel bisindole and thiazole derivatives were synthesized and evaluated against the amoebae. The antiamoebic properties of four synthetic compounds i.e., two new bisindoles (2-Bromo-4-(di (1H-indol-3-yl)methyl)phenol (denoted as A1) and 2-Bromo-4-(di (1H-indol-3-yl)methyl)-6-methoxyphenol (A2)) and two known thiazole (4-(3-Nitrophenyl)-2-(2-(pyridin-3-ylmethylene)hydrazinyl)thiazole (A3) and 4-(Biphenyl-4-yl)-2-(2-(1-(pyridin-4-yl)ethylidene)hydrazinyl)thiazole (A4)) were evaluated against B. mandrillaris and N. fowleri. The ability of silver nanoparticle (AgNPs) conjugation to enrich antiamoebic activities of the compounds was also investigated. The synthetic heterocyclic compounds demonstrated up to 53% and 69% antiamoebic activities against B. mandrillaris and N. fowleri respectively, while resulting in up to 57% and 68% amoebistatic activities, respectively. Antiamoebic activities of the compounds were enhanced by up to 71% and 51% against B. mandrillaris and N. fowleri respectively, after conjugation with AgNPs. These compounds exhibited potential antiamoebic effects against B. mandrillaris and N. fowleri and conjugation of synthetic heterocyclic compounds with AgNPs enhanced their activity against the amoebae.


Asunto(s)
Amebiasis/tratamiento farmacológico , Balamuthia mandrillaris/efectos de los fármacos , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Indoles/administración & dosificación , Naegleria fowleri/efectos de los fármacos , Tiazoles/administración & dosificación , Amebiasis/parasitología , Amebicidas/administración & dosificación , Amebicidas/química , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Células HeLa , Humanos , Indoles/química , Concentración 50 Inhibidora , Nanopartículas del Metal , Tiazoles/química
19.
Parasitol Res ; 119(6): 1943-1954, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32385711

RESUMEN

Acanthamoeba causes diseases such as Acanthamoeba keratitis (AK) which leads to permanent blindness and granulomatous Acanthamoeba encephalitis (GAE) where there is formation of granulomas in the brain. Current treatments such as chlorhexidine, diamidines, and azoles either exhibit undesirable side effects or require immediate and prolonged treatment for the drug to be effective or prevent relapse. Previously, antifungal drugs amphotericin B, nystatin, and fluconazole-conjugated silver with nanoparticles have shown significantly increased activity against Acanthamoeba castellanii. In this study, two functionally diverse tetrazoles were synthesized, namely 5-(3-4-dimethoxyphenyl)-1H-tetrazole and 1-(3-methoxyphenyl)-5-phenoxy-1H-tetrazole, denoted by T1 and T2 respectively. These compounds were evaluated for anti-Acanthamoeba effects at different concentrations ranging from 5 to 50 µM. Furthermore, these compounds were conjugated with silver nanoparticles (AgNPs) to enhance their efficacy. Particle size analysis showed that T1-AgNPs and T2-AgNPs had an average size of 52 and 70 nm respectively. After the successful synthesis and characterization of tetrazoles and tetrazole-conjugated AgNPs, they were subjected to anti-Acanthamoeba studies. Amoebicidal assay showed that at concentration 10 µM and above, T2 showed promising antiamoebic activities between the two compounds while encystation and excystation assays reveal that both T1 and T2 have inhibited differentiation activity against Acanthamoeba castellanii. Conjugation of T1 and T2 to AgNP also increased efficacy of tetrazoles as anti-Acanthamoeba agents. This may be due to the increased bioavailability as AgNP allows better delivery of treatment compounds to A. castellanii. Human cell cytotoxicity assay revealed that tetrazoles and AgNPs are significantly less toxic towards human cells compared with chlorhexidine which is known to cause undesirable side effects. Cytopathogenicity assay also revealed that T2 conjugated with AgNPs significantly reduced cytopathogenicity of A. castellanii compared with T2 alone, suggesting that T2-conjugated AgNP is an effective and safe anti-Acanthamoeba agent. The use of a synthetic azole compound conjugated with AgNPs can be an alternative strategy for drug development against A. castellanii. However, mechanistic and in vivo studies are needed to explore further translational values.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Amebicidas/farmacología , Nanopartículas del Metal , Plata/farmacología , Tetrazoles/farmacología , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/aislamiento & purificación , Amebicidas/síntesis química , Amebicidas/toxicidad , Clorhexidina/farmacología , Genotipo , Células HeLa , Humanos , Tetrazoles/síntesis química , Tetrazoles/toxicidad
20.
Parasitol Res ; 119(7): 2327-2335, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32476058

RESUMEN

Acanthamoeba castellanii is a free-living amoeba which can cause a blinding keratitis and fatal granulomatous amoebic encephalitis. The treatment of Acanthamoeba infections is challenging due to formation of cyst. Quinazolinones are medicinally important scaffold against parasitic diseases. A library of nineteen new 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one derivatives was synthesized to evaluate their antiamoebic activity against Acanthamoeba castellanii. One-pot synthesis of 3-aryl-6,7-dimethoxyquinazolin-4(3H)-ones (1-19) was achieved by reaction of 2-amino-4,5-dimethoxybenzoic acid, trimethoxymethane, and different substituted anilines. These compounds were purified and characterized by standard chromatographic and spectroscopic techniques. Antiacanthamoebic activity of these compounds was determined by amoebicidal, encystation, excystation and host cell cytopathogenicity in vitro assays at concentrations of 50 and 100 µg/mL. The IC50 was found to be between 100 and 50 µg/mL for all the compounds except compound 5 which did not exhibit amoebicidal effects at these concentrations. Furthermore, lactate dehydrogenase assay was also performed to evaluate the in vitro cytotoxicity of these compounds against human keratinocyte (HaCaT) cells. The results revealed that eighteen out of nineteen derivatives of quinazolinones significantly decreased the viability of A. castellanii. Furthermore, eighteen out of nineteen tested compounds inhibited the encystation and excystation, as well as significantly reduced the A. castellanii-mediated cytopathogenicity against human cells. Interestingly, while tested against human normal cell line HaCaT keratinocytes, all compounds did not exhibit any overt cytotoxicity. Furthermore, a detailed structure-activity relationship is also studied to optimize the most potent hit from these synthetic compounds. This report presents several potential lead compounds belonging to 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one derivatives for drug discovery against infections caused by Acanthamoeba castellanii.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Amebicidas/química , Amebicidas/farmacología , Quinazolinonas/química , Quinazolinonas/farmacología , Acanthamoeba castellanii/crecimiento & desarrollo , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología , Amebicidas/síntesis química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Enquistamiento de Parásito/efectos de los fármacos , Quinazolinonas/síntesis química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA