Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Langmuir ; 37(31): 9302-9335, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34327999

RESUMEN

The self-assembly of colloids at fluid interfaces is a well-studied research field both for gaining fundamental insights and for material fabrication. The fluid interface allows the confinement of particles in two dimensions and may act as a template for guiding their organization into soft and reconfigurable structures. Additives (e.g., surfactants, salts, and polymers) in the colloidal suspension are routinely used as a practical and effective tool to drive particle adsorption and tune their interfacial organization. However, some phenomena lying at the heart of the accumulation and self-assembly of particles at fluid interfaces remain poorly understood. This Feature Article aims to critically analyze the mechanisms involved in the adsorption and self-organization of micro- and nanoparticles at various fluid interfaces. In particular, we address the role of additives in both promoting the adsorption of particles from the bulk suspension to the fluid interface and in mediating the interactions between interfacial particles. We emphasize how different types of additives play a crucial role in controlling the interactions between suspended particles and the fluid interface as well as the interactions between adsorbed particles, thus dictating the final self-assembled structure. We also critically summarize the main experimental protocols developed for the complete adsorption of particles initially suspended in the bulk. Furthermore, we highlight some special properties (e.g., reconfigurability upon external stimulation and dissipative self-assembly) and the application potential of structures formed by colloid self-organization at fluid interfaces mediated/promoted by additives. We believe our contribution serves both as a practical roadmap to scientists coming from other fields and as a valuable information resource for all researchers interested in this exciting research field.

2.
Langmuir ; 37(45): 13265-13277, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34735163

RESUMEN

Core-sheath electrospinning is a powerful tool for producing composite fibers with one or multiple encapsulated functional materials, but many material combinations are difficult or even impossible to spin together. We show that the key to success is to ensure a well-defined core-sheath interface while also maintaining a constant and minimal interfacial energy across this interface. Using a thermotropic liquid crystal as a model functional core and polyacrylic acid or styrene-butadiene-styrene block copolymer as a sheath polymer, we study the effects of using water, ethanol, or tetrahydrofuran as polymer solvent. We find that the ideal core and sheath materials are partially miscible, with their phase diagram exhibiting an inner miscibility gap. Complete immiscibility yields a relatively high interfacial tension that causes core breakup, even preventing the core from entering the fiber-producing jet, whereas the lack of a well-defined interface in the case of complete miscibility eliminates the core-sheath morphology, and it turns the core into a coagulation bath for the sheath solution, causing premature gelation in the Taylor cone. Moreover, to minimize Marangoni flows in the Taylor cone due to local interfacial tension variations, a small amount of the sheath solvent should be added to the core prior to spinning. Our findings resolve a long-standing confusion regarding guidelines for selecting core and sheath fluids in core-sheath electrospinning. These discoveries can be applied to many other material combinations than those studied here, enabling new functional composites of large interest and application potential.

3.
Angew Chem Int Ed Engl ; 59(43): 19260-19267, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32686264

RESUMEN

Liquid marbles have potential to serve as mini-reactors for fabricating new materials, but this has been exploited little and mostly for conventional chemical reactions. Here, we uncover the unparalleled capability of liquid marbles to act as platforms for controlling the self-assembly of a bio-derived polymer, hydroxypropyl cellulose, into a cholesteric liquid crystalline phase showing structural coloration by Bragg reflection. By adjusting the cholesteric pitch via quantitative water extraction, we achieve liquid marbles that we can tailor for structural color anywhere in the visible range. Liquid marbles respond with color change that can be detected by eye, to changes in temperature, exposure to toxic chemicals and mechanical deformation. Our concept demonstrates the advantages of using liquid marbles as a miniature platform for controlling the liquid crystal self-assembly of bio-derived polymers, and their exploitation to fabricate sustainable, responsive soft photonic objects.

4.
Angew Chem Int Ed Engl ; 58(27): 9145-9149, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31041837

RESUMEN

Control over particle interactions and organization at fluid interfaces is of great importance both for fundamental studies and practical applications. Rendering these systems stimulus-responsive is thus a desired challenge both for investigating dynamic phenomena and realizing reconfigurable materials. Here, we describe the first reversible photocontrol of two-dimensional colloidal crystallization at the air/water interface, where millimeter-sized assemblies of microparticles can be actuated through the dynamic adsorption/desorption behavior of a photosensitive surfactant added to the suspension. This allows us to dynamically switch the particle organization between a highly crystalline (under light) and a disordered (in the dark) phase with a fast response time (crystallization in ≈10 s, disassembly in ≈1 min). These results evidence a new kind of dissipative system where the crystalline state can be maintained only upon energy supply.

5.
Langmuir ; 34(50): 15526-15536, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30415547

RESUMEN

Controlling the organization of particles at liquid-gas interfaces usually relies on multiphasic preparations and external applied forces. Here, we show that micromolar amounts of a conventional cationic surfactant induce, in a single step, both adsorption and crystallization of various types of nanometer- to micrometer-sized anionic particles at the air-water interface, without any additional phase involved or external forces other than gravity. Contrary to conventional surfactant-induced particle adsorption through neutralization and hydrophobization at a surfactant concentration close to the critical micellar concentration (CMC), we show that in our explored concentration regime (CMC/1000-CMC/100), particles adsorb with a low contact angle and maintain most of their charge, leading to the formation of two-dimensional assemblies with different structures, depending on surfactant ( Cs) and particle ( Cp) concentrations. At low Cs and Cp, particles are repulsive and form disordered assemblies. Increasing Cp in this regime increases the number of adsorbed particles, leading to the formation of mm-sized, highly ordered polycrystalline assemblies because of the long-range attraction mediated by the collective deformation of the interface. Increasing Cs decreases the particle repulsion and therefore the interparticle distance within the monocrystalline domains. A further increase in Cs (≈CMC/10) leads to a progressive neutralization of particles accompanied by the formation of disordered structures, ranging from densely packed amorphous ones to loosely packed gels. These results emphasize a new role of the surfactant to mediate both adsorption and crystallization of particles at liquid-gas interfaces and provide a practical manner to prepare two-dimensional ordered colloidal assemblies in a remarkably robust and convenient manner.

6.
Langmuir ; 33(20): 5025-5036, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28446021

RESUMEN

We describe the systematic and quantitative investigation of a large number of patterns that emerge after the evaporation of aqueous drops containing fumed silica nanoparticles (NPs) of varying wettabilities for an extended particle concentration range. We show that for a chosen system, the dry pattern morphology is mainly determined by particle-particle interactions (Coulomb repulsion and hydrophobic attraction) in the bulk. These depend on both particle hydrophobicity and particle concentration within the drop. For high and intermediate particle concentrations, interparticle hydrophobic attraction is the dominant factor defining the deposit morphology. With increasing particle hydrophobicity, patterns ranging from rings to domes are observed, arising from the time needed for the drop to gel compared with the total evaporation time. On the contrary, drops of dilute suspensions maintain a finite viscosity during most of the drop lifetime, resulting in dry patterns that are predominantly rings for all particle hydrophobicities. In all investigated systems, the NP concentration corresponded to a large excess of NPs in the bulk compared with the maximal amount that could be adsorbed at available interfaces, making particle-interface interactions such as adsorption of hydrophobic NPs at the air-water interface a negligible contribution over bulk particle-particle interactions. This work emphasizes the advantage of particle surface chemistry in tuning both particle-particle interactions and particle deposition onto solid substrates in a robust manner, without the need for any additive such as a surfactant.

7.
Nano Lett ; 16(1): 644-50, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26630478

RESUMEN

Controlled particle deposition on surfaces is crucial for both exploiting collective properties of particles and their integration into devices. Most available methods depend on intrinsic properties of either the substrate or the particles to be deposited making them difficult to apply to complex, naturally occurring or industrial formulations. Here we describe a new strategy to pattern particles from an evaporating drop, regardless of inherent particle characteristics and suspension composition. We use light to generate Marangoni surface stresses resulting in flow patterns that accumulate particles at predefined positions. Using projected images, we generate a broad variety of complex patterns, including multiple spots, lines and letters. Strikingly, this method, which we call evaporative optical Marangoni assembly (eOMA), allows us to pattern particles regardless of their size or surface properties, in model suspensions as well as in complex, real-world formulations such as commercial coffee.

8.
Angew Chem Int Ed Engl ; 56(52): 16565-16570, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29131511

RESUMEN

The magnetic actuation of deposited drops has mainly relied on volume forces exerted on the liquid to be transported, which is poorly efficient with conventional diamagnetic liquids such as water and oil, unless magnetosensitive particles are added. Herein, we describe a new and additive-free way to magnetically control the motion of discrete liquid entities. Our strategy consists of using a paramagnetic liquid as a deformable substrate to direct, using a magnet, the motion of various floating liquid entities, ranging from naked drops to liquid marbles. A broad variety of liquids, including diamagnetic (water, oil) and nonmagnetic ones, can be efficiently transported using the moderate magnetic field (ca. 50 mT) produced by a small permanent magnet. Complex trajectories can be achieved in a reliable manner and multiplexing potential is demonstrated through on-demand drop fusion. Our paramagnetofluidic method advantageously works without any complex equipment or electric power, in phase with the necessary development of robust and low-cost analytical and diagnostic fluidic devices.

9.
J Am Chem Soc ; 138(36): 11623-32, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27562632

RESUMEN

The coffee-ring effect denotes the accumulation of particles at the edge of an evaporating sessile drop pinned on a substrate. Because it can be detected by simple visual inspection, this ubiquitous phenomenon can be envisioned as a robust and cost-effective diagnostic tool. Toward this direction, here we systematically analyze the deposit morphology of drying drops containing polystyrene particles of different surface properties with various proteins (bovine serum albumin (BSA) and different forms of hemoglobin). We show that deposit patterns reveal information on both the adsorption of proteins onto particles and their reorganization following adsorption. By combining pattern analysis with adsorption isotherm and zeta potential measurements, we show that the suppression of the coffee-ring effect and the formation of a disk-shaped pattern is primarily associated with particle neutralization by protein adsorption. However, our findings also suggest that protein reorganization following adsorption can dramatically invert this tendency. Exposure of hydrophobic (respectively charged) residues can lead to disk (respectively ring) deposit morphologies independently of the global particle charge. Surface tension measurements and microscopic observations of the evaporating drops show that the determinant factor of the deposit morphology is the accumulation of particles at the liquid/gas interface during evaporation. This general behavior opens the possibility to probe protein adsorption and reorganization on particles by the analysis of the deposit patterns, the formation of a disk being the robust signature of particles rendered hydrophobic by protein adsorption. We show that this method is sensitive enough to detect a single point mutation in a protein, as demonstrated here by the distinct patterns formed by human native hemoglobin h-HbA and its mutant form h-HbS, which is responsible for sickle cell anemia.


Asunto(s)
Hemoglobinas/química , Hemoglobinas/genética , Nanopartículas/química , Mutación Puntual , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/genética , Adsorción , Adulto , Animales , Bovinos , Humanos , Modelos Moleculares , Poliestirenos/química , Conformación Proteica
10.
Soft Matter ; 12(37): 7782-7791, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27722740

RESUMEN

In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s-1 the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 µm.

11.
Angew Chem Int Ed Engl ; 55(37): 11183-7, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27381297

RESUMEN

Liquid marbles, that is, liquid drops coated by a hydrophobic powder, do not wet any solid or liquid substrate, making their transport and manipulation both highly desirable and challenging. Herein, we describe the light-driven transport of floating liquid marbles and emphasize a surprising motion behavior. Liquid marbles are deposited on a water solution containing photosensitive surfactants. Irradiation of the solution generates photoreversible Marangoni flows that transport the liquid marbles toward UV light and away from blue light when the thickness of the liquid substrate is large enough (Marangoni regime). Below a critical thickness, the liquid marbles move in the opposite direction to that of the surface flow at a speed increasing with decreasing liquid thickness (anti-Marangoni). We demonstrate that the anti-Marangoni motion is driven by the free surface deformation, which propels the non-wetting marble against the surface flow. We call this behavior "slide effect".

12.
Chemphyschem ; 16(13): 2726-2734, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26234430

RESUMEN

The evaporation of a drop of colloidal suspension pinned on a substrate usually results in a ring of particles accumulated at the periphery of the initial drop. Intense research has been devoted to understanding, suppressing and ultimately controlling this so-called coffee-ring effect (CRE). Although the crucial role of flow patterns in the CRE has been thoroughly investigated, the effect of interactions on this phenomenon has been largely neglected. This Concept paper reviews recent works in this field and shows that the interactions of colloids with (and at) liquid-solid and liquid-gas interfaces as well as bulk particle-particle interactions drastically affect the morphology of the deposit. General rules are established to control the CRE by tuning these interactions, and guidelines for the rational physicochemical formulation of colloidal suspensions capable of depositing particles in desirable patterns are provided. This opens perspectives for the reliable control of the CRE in real-world formulations and creates new paradigms for flexible particle patterning at all kinds of interfaces as well for the exploitation of the CRE as a robust and inexpensive diagnostic tool.

13.
Langmuir ; 31(14): 4113-20, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25797472

RESUMEN

We study the effect of surfactants on the deposits formed after the evaporation of colloidal suspension drops, at initial concentrations lower than the critical micellar concentrations, for various particle/surfactant mixtures. We show that the surfactant-mediated interactions between particles and the liquid-gas (LG) and liquid-solid (LS) interfaces, rather than the flow patterns, primarily define the morphology of the dry deposit in a robust and reproducible manner. For like-charged particle/surfactant mixtures, most of the particles form a ring-shaped deposit (according to the so-called "Coffee-Ring Effect"), but some particles can also be deposited inside the ring in a way that is modulated by electrostatic interactions between the particles and the LS interface. For oppositely charged systems, surfactant adsorption to the particle surface strongly affects particle-LG interface interactions, which in turn control the deposition pattern. For low surfactant concentrations, coffee-rings are systematically observed. For intermediate concentrations, the charge of surfactant-decorated particles becomes nearly neutral, and their hydrophobicity is enhanced, which promotes particle trapping at the LG interface. A particle skin is formed and its deposition upon drying leads to homogeneous disk-like patterns. For high surfactant concentrations, particle charge is reversed, and coffee-rings are observed again. Notably, this ring-disk-ring evolution of the deposition behavior as a function of surfactant concentration is observed in a variety of mixtures, regardless of particle absolute charge and surface chemistry as well as of surfactant charge and hydrophobicity. Its apparent universal character makes it a promising strategy for a robust control of particle deposition from evaporating drops.

14.
Angew Chem Int Ed Engl ; 53(51): 14077-81, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25288180

RESUMEN

When a colloidal drop dries on a surface, most of the particles accumulate at the drop periphery, yielding a characteristic ring-shaped pattern. This so-called coffee-ring effect (CRE) is observed in any pinned evaporating drop containing non-volatile solutes. Here, the CRE is dynamically controlled for the first time by using light, and an unprecedented reconfigurability of the deposit profile is demonstrated. This is achieved through a new mechanism where particle stickiness is optically tuned on demand, thus offering reliable modulation of the deposition pattern. The system consists of anionic nanoparticles and photosensitive cationic surfactants dispersed in water. It is shown that light-dependent modulation of surfactant-particle interactions dictates particle attraction and trapping at the liquid-gas interface, which allows us to direct particle deposition into a wide range of patterns from rings to homogeneous disks. Patterning from single drops is photoreversible upon changing the wavelength whereas spatial control in multiple drop arrays is achieved using a photomask.


Asunto(s)
Nanopartículas/química , Tensoactivos/química , Termodinámica , Luz , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie , Agua/química
15.
Adv Mater ; : e2408243, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188202

RESUMEN

Thin polymer films (TPFs) are indispensable elements in numerous technologies ranging from liquid encapsulation to biotechnology to electronics. However, their production typically relies on wet chemistry involving organic solvents or chemical vapor deposition, necessitating elaborate equipment and often harsh conditions. Here, an eco-friendly, fast, and facile synthesis of water-templated interfacial polymers based on cyanoacrylates (superglues, CAs) that yield thin films with tailored properties is demonstrated. Specifically, by exposing a cationic surfactant-laden water surface to cyanoacrylate vapors, surfactant-modulated anionic polymerization produces a manipulable thin polymer film with a thickness growth rate of 8 nm min-1. Furthermore, the shape and color of the film are precisely controlled by the polymerization kinetics, wetting conditions, and/or exposure to patterned light. Using various interfaces as templates for film growth, including the free surface of drops and soap bubbles, the developed method advantageously enables in situ packaging of chemical and biological cargos in liquid phase as well as the encapsulation of gases within solidified bubbles. Simple, versatile, and biocompatible, this technology constitutes a potent platform for programmable coating and soft/smart encapsulation of fluids.

16.
Opt Lett ; 37(13): 2487-9, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22743430

RESUMEN

We report on the versatile effect of weak red laser light impinging on diblock copolymer [poly(isoprene-b-styrene)] dispersions in two selective solvents for each block. In the strongly scattering but transparent micellar solutions in hexane (a good solvent for polyisoprene), higher refractive index copolymer-rich fibers were formed. In the turbid dispersions of the same copolymer in ethyl acetate (a good solvent for polystyrene), the effect of self-induced transparency was observed. A two-step patterning mechanism caused the generation of a transparent microchannel, increasing light transmission. The analogy between the current effect and that observed in homopolymer polyisoprene solutions in different solvents is discussed toward an understanding of the unanticipated light-soft-matter interaction.

17.
RSC Adv ; 9(18): 10030-10033, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35520912

RESUMEN

We precisely measure the effect of moderate magnetic field intensity on the surface tension of liquids, by placing pendant drops inside uniform fields where bulk forces due to gradients are eliminated. The surface tension of water is unaffected while that of paramagnetic salt solutions slightly decreases with increasing field strength.

18.
ACS Appl Mater Interfaces ; 9(42): 37435-37445, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28984133

RESUMEN

We have recently devised the evaporative optical Marangoni assembly (eOMA), a novel and versatile interfacial flow-based method for directing the deposition of colloidal nanoparticles (NPs) on solid substrates from evaporating sessile drops along desired patterns using shaped UV light. Here, we focus on a fixed UV spot irradiation resulting in a cylinder-like deposit of assembled particles and show how the geometrical features of the single deposit can be tailored in three dimensions by simply adjusting the optical conditions or the sample composition, in a quantitative and reproducible manner. Sessile drops containing cationic NPs and a photosensitive surfactant at various concentrations are allowed to evaporate under a single UV beam with a diameter much smaller than that of the drop. After complete evaporation, the geometrical characteristics of the NP deposits are precisely assessed using optical profilometry. We show that both the volume and the radial size of the light-directed NP deposit can be adjusted by varying the diameter or the intensity of the UV beam or alternatively by changing the concentration of the photosensitive surfactant. Notably, in all these cases, the deposits display an almost constant median height corresponding to a few layers of particles. Moreover, both the radial and the axial extent of the patterns are tuned by changing the NP concentration. These results are explained by the correlation among the strength of Marangoni flow, the particle trapping efficiency, and the volume of the deposit, and by the role of evaporation-driven flow in strongly controlling the deposit height. Finally, we extend the versatility of eOMA by demonstrating that NPs down to 30 nm in diameter can be effectively patterned on glass or polymeric substrates.

19.
Opt Lett ; 33(23): 2839-41, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19037444

RESUMEN

Fully transparent nondilute polydiene solutions exhibit optical nonlinearities when irradiated by a low-power cw laser in the visible. The formation of optical spatial solitons is imaged through phase contrast microscopy. Both (2+1)D and (1+1)D modulational instabilities are evidenced as 2D and 1D arrays of linear filaments formed by beam defocusing or by using a cylindrical lens. The origin of the nonlinearity remains elusive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA