Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38310342

RESUMEN

SUMMARY: Pedigree-based analyses' prime role is to unravel relationships between individuals in breeding programs and germplasms. This is critical information for decoding the genetics underlying main inherited traits of relevance, and unlocking the genotypic variability of a species to carry out genomic selections and predictions. Despite the great interest, current lineage visualizations become quite limiting in terms of public display, exploration, and tracing of traits up to ancestral donors. PERSEUS is a user-friendly, intuitive, and interactive web-based tool for pedigree visualizations represented as directed graph networks distributed using a force-repulsion method. The visualizations do not only showcase individual relationships among accessions, but also facilitate a seamless search and download of phenotypic traits along the pedigrees. PERSEUS is a promising tool for breeders and scientists, advantageous for evolutionary, genealogy, and diversity analyses among related accessions and species. AVAILABILITY AND IMPLEMENTATION: PERSEUS is freely accessible at https://bioinformatics.cragenomica.es/perseus and GitHub code is available at https://github.com/aranzana-lab/PERSEUS.


Asunto(s)
Genómica , Programas Informáticos , Humanos , Linaje , Genoma , Internet
2.
Genome Res ; 31(4): 592-606, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33687945

RESUMEN

The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Genoma de Planta/genética , Genómica , Prunus persica/genética
3.
BMC Biol ; 20(1): 139, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698132

RESUMEN

BACKGROUND: Peach (Prunus persica) is an economically important stone fruit crop in Rosaceae and widely cultivated in temperate and subtropical regions, emerging as an excellent material to study the interaction between plant and environment. During its genus, there are four wild species of peach, all living in harsh environments. For example, one of the wild species, P. mira, originates from the Qinghai-Tibet Plateau (QTP) and exhibits strong cold/ultraviolet ray environmental adaptations. Although remarkable progresses in the gene discovery of fruit quality-related traits in peach using previous assembled genome were obtained, genomic basis of the response of these wild species to different geographical environments remains unclear. RESULTS: To uncover key genes regulating adaptability in different species and analyze the role of genetic variations in resistance formation, we performed de novo genome assembling of four wild relatives of peach (P. persica), P. mira, P. davidiana, P. kansuensis, and P. ferganensis and resequenced 175 peach varieties. The phylogenetic tree showed that the divergence time of P. mira and other wild relatives of peach was 11.5 million years ago, which was consistent with the drastic crustal movement of QTP. Abundant genetic variations were identified in four wild species when compared to P. persica, and the results showed that plant-pathogen interaction pathways were enriched in genes containing small insertions and deletions and copy number variations in all four wild relatives of peach. Then, the data were used to identify new genes and variations regulating resistance. For example, presence/absence variations which result from a hybridization event that occurred between P. mira and P. dulcis enhanced the resistance of their putative hybrid, P. davidiana. Using bulked segregant analysis, we located the nematode resistance locus of P. kansuensis in chromosome 2. Within the mapping region, a deletion in the promoter of one NBS-LRR gene was found to involve the resistance by regulating gene expression. Furthermore, combined with RNA-seq and selective sweeps analysis, we proposed that a deletion in the promoter of one CBF gene was essential for high-altitude adaptation of P. mira through increasing its resistance to low temperature. CONCLUSIONS: In general, the reference genomes assembled in the study facilitate our understanding of resistance mechanism of perennial fruit crops, and provide valuable resources for future breeding and improvement.


Asunto(s)
Prunus persica , Cromosomas , Variaciones en el Número de Copia de ADN , Evolución Molecular , Genoma de Planta , Filogenia , Fitomejoramiento , Prunus persica/genética
4.
Plant J ; 101(2): 455-472, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529539

RESUMEN

We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short- and long-read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated almond genome size of 238 Mb, of which 91% is anchored to eight pseudomolecules corresponding to its haploid chromosome complement, and annotated 27 969 protein-coding genes and 6747 non-coding transcripts. By phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that almond and peach (Prunus persica) diverged around 5.88 million years ago. These two genomes are highly syntenic and show a high degree of sequence conservation (20 nucleotide substitutions per kb). However, they also exhibit a high number of presence/absence variants, many attributable to the movement of transposable elements (TEs). Transposable elements have generated an important number of presence/absence variants between almond and peach, and we show that the recent history of TE movement seems markedly different between them. Transposable elements may also be at the origin of important phenotypic differences between both species, and in particular for the sweet kernel phenotype, a key agronomic and domestication character for almond. Here we show that in sweet almond cultivars, highly methylated TE insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent history and diversification of almond and its close relative peach.


Asunto(s)
Secuencia de Bases , Elementos Transponibles de ADN/genética , Genoma de Planta , Prunus dulcis/genética , Prunus persica/genética , Mapeo Cromosómico , Metilación de ADN , Domesticación , Evolución Molecular , Genes de Plantas/genética , Filogenia , Semillas , Especificidad de la Especie
5.
Plant Physiol ; 184(2): 632-646, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32727910

RESUMEN

Plants have evolved a range of adaptive mechanisms that adjust their development and physiology to variable external conditions, particularly in perennial species subjected to long-term interplay with the environment. Exploiting the allelic diversity within available germplasm and leveraging the knowledge of the mechanisms regulating genotype interaction with the environment are crucial to address climatic challenges and assist the breeding of novel cultivars with improved resilience. The development of multisite collections is of utmost importance for the conservation and utilization of genetic materials and will greatly facilitate the dissection of genotype-by-environment interaction. Such resources are still lacking for perennial trees, especially with the intrinsic difficulties of successful propagation, material exchange, and living collection maintenance. This work describes the concept, design, and realization of the first multisite peach (Prunus persica) reference collection (PeachRefPop) located across different European countries and sharing the same experimental design. Other than an invaluable tool for scientific studies in perennial species, PeachRefPop provides a milestone in an international collaborative project for the conservation and exploitation of European peach germplasm resources and, ultimately, as a true heritage for future generations.


Asunto(s)
Prunus persica , Banco de Semillas , Europa (Continente)
6.
J Sci Food Agric ; 99(8): 4105-4113, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30784078

RESUMEN

BACKGROUND: Monilinia spp. are responsible for brown rot, one of the most significant stone fruit diseases. Planting resistant cultivars seems a promising alternative, although most commercial cultivars are susceptible to brown rot. The aim of this study was to explore resistance to Monilinia fructicola over two seasons in a backcross one interspecific population between almond 'Texas' and peach 'Earlygold' (named T1E). RESULTS: 'Texas' almond was resistant to brown rot inoculation, whereas peach was highly susceptible. Phenotypic data from the T1E population indicated wide differences in response to M. fructicola. Additionally, several non-wounded individuals exhibited resistance to brown rot. Quantitative trait loci (QTLs) were identified in several linkage groups, but only two proximal QTLs in G4 were detected over both seasons and accounted for 11.3-16.2% of the phenotypic variation. CONCLUSION: Analysis of the progeny allowed the identification of resistant genotypes that could serve as a source of resistance in peach breeding programs. The finding of loci associated with brown rot resistance would shed light on implementing a strategy based on marker-assisted selection (MAS) for introgression of this trait into elite peach materials. New peach cultivars resistant to brown rot may contribute to the implementation of more sustainable crop protection strategies. © 2019 Society of Chemical Industry.


Asunto(s)
Ascomicetos/fisiología , Quimera/inmunología , Enfermedades de las Plantas/inmunología , Prunus dulcis/genética , Prunus persica/genética , Quimera/genética , Quimera/microbiología , Resistencia a la Enfermedad , Genotipo , Hibridación Genética , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Prunus dulcis/inmunología , Prunus dulcis/microbiología , Prunus persica/inmunología , Prunus persica/microbiología , Sitios de Carácter Cuantitativo
7.
BMC Genomics ; 18(1): 432, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28583089

RESUMEN

BACKGROUND: Highly polygenic traits such as fruit weight, sugar content and acidity strongly influence the agroeconomic value of peach varieties. Genomic Selection (GS) can accelerate peach yield and quality gain if predictions show higher levels of accuracy compared to phenotypic selection. The available IPSC 9K SNP array V1 allows standardized and highly reliable genotyping, preparing the ground for GS in peach. RESULTS: A repeatability model (multiple records per individual plant) for genome-enabled predictions in eleven European peach populations is presented. The analysis included 1147 individuals derived from both commercial and non-commercial peach or peach-related accessions. Considered traits were average fruit weight (FW), sugar content (SC) and titratable acidity (TA). Plants were genotyped with the 9K IPSC array, grown in three countries (France, Italy, Spain) and phenotyped for 3-5 years. An analysis of imputation accuracy of missing genotypic data was conducted using the software Beagle, showing that two of the eleven populations were highly sensitive to increasing levels of missing data. The regression model produced, for each trait and each population, estimates of heritability (FW:0.35, SC:0.48, TA:0.53, on average) and repeatability (FW:0.56, SC:0.63, TA:0.62, on average). Predictive ability was estimated in a five-fold cross validation scheme within population as the correlation of true and predicted phenotypes. Results differed by populations and traits, but predictive abilities were in general high (FW:0.60, SC:0.72, TA:0.65, on average). CONCLUSIONS: This study assessed the feasibility of Genomic Selection in peach for highly polygenic traits linked to yield and fruit quality. The accuracy of imputing missing genotypes was as high as 96%, and the genomic predictive ability was on average 0.65, but could be as high as 0.84 for fruit weight or 0.83 for titratable acidity. The estimated repeatability may prove very useful in the management of the typical long cycles involved in peach productions. All together, these results are very promising for the application of genomic selection to peach breeding programmes.


Asunto(s)
Frutas/crecimiento & desarrollo , Genómica , Prunus persica/crecimiento & desarrollo , Prunus persica/genética , Cruzamiento , Genotipo , Polimorfismo de Nucleótido Simple , Estadística como Asunto
8.
BMC Genomics ; 18(1): 404, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28583082

RESUMEN

BACKGROUND: Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. RESULTS: Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. CONCLUSIONS: The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality.


Asunto(s)
Cruzamiento , Prunus persica/genética , Sitios de Carácter Cuantitativo/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genotipo , Polimorfismo de Nucleótido Simple , Probabilidad , Prunus persica/crecimiento & desarrollo , Solubilidad
9.
Bioinformatics ; 31(23): 3873-4, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249809

RESUMEN

UNLABELLED: ASSIsT (Automatic SNP ScorIng Tool) is a user-friendly customized pipeline for efficient calling and filtering of SNPs from Illumina Infinium arrays, specifically devised for custom genotyping arrays. Illumina has developed an integrated software for SNP data visualization and inspection called GenomeStudio (GS). ASSIsT builds on GS-derived data and identifies those markers that follow a bi-allelic genetic model and show reliable genotype calls. Moreover, ASSIsT re-edits SNP calls with null alleles or additional SNPs in the probe annealing site. ASSIsT can be employed in the analysis of different population types such as full-sib families and mating schemes used in the plant kingdom (backcross, F1, F2), and unrelated individuals. The final result can be directly exported in the format required by the most common software for genetic mapping and marker-trait association analysis. ASSIsT is developed in Python and runs in Windows and Linux. AVAILABILITY AND IMPLEMENTATION: The software, example data sets and tutorials are freely available at http://compbiotoolbox.fmach.it/assist/. CONTACT: eric.vandeweg@wur.nl.


Asunto(s)
Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple , Programas Informáticos , Alelos , Animales , Humanos
11.
Theor Appl Genet ; 128(7): 1261-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25841354

RESUMEN

KEY MESSAGE: First near-isogenic line collection in diploid strawberry, a tool for morphologic, phenotypic and nutritional QTL analysis. Diploid strawberry (Fragaria vesca), with a small genome, has a high degree of synteny with the octoploid cultivated strawberry (F. × ananassa), so can be used as a simplified model for genetic analysis of the octoploid species. Agronomically interesting traits are usually inherited quantitatively and they need to be studied in large segregating progenies well characterized with molecular markers. Near-isogenic lines (NILs) are tools to dissect quantitative characters and identify some of their components as Mendelian traits. NILs are fixed homozygous lines that share the same genetic background from a recurrent parent with a single introgression region from a donor parent. Here, we developed the first NIL collection in Fragaria, with F. vesca cv. Reine des Vallées as the recurrent parent and F. bucharica as the donor parent. A collection of 39 NILs was identified using a set of single sequence repeat markers. The NILs had an average introgression of 32 cM (6 % of genome) and were phenotyped over several years in two locations. This collection segregates for agronomic characters, such as flowering, germination, fruit size and shape, and nutritional content. At least 16 QTLs for morphological and reproductive traits, such as round fruits and vegetative propagation, and seven for nutritional traits such as sugar composition and total polyphenol content, were identified. The NIL collection of F. vesca can significantly facilitate understanding of the genetics of many traits and provide insight into the more complex F. × ananassa genome.


Asunto(s)
Fragaria/genética , Frutas , Valor Nutritivo , Mapeo Cromosómico , Cruzamientos Genéticos , ADN de Plantas/genética , Diploidia , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Repeticiones de Microsatélite , Fenotipo , Sitios de Carácter Cuantitativo
12.
Proc Natl Acad Sci U S A ; 109(29): 11872-7, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753475

RESUMEN

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site-leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.


Asunto(s)
Evolución Biológica , Cucumis melo/genética , Genoma de Planta/genética , Filogenia , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Elementos Transponibles de ADN/genética , Resistencia a la Enfermedad/genética , Genes Duplicados/genética , Genes de Plantas/genética , Genómica/métodos , Funciones de Verosimilitud , Modelos Genéticos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
Hortic Res ; 11(6): uhae106, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883330

RESUMEN

The vast majority of traditional almond varieties are self-incompatible, and the level of variability of the species is very high, resulting in a high-heterozygosity genome. Therefore, information on the different haplotypes is particularly relevant to understand the genetic basis of trait variability in this species. However, although reference genomes for several almond varieties exist, none of them is phased and has genome information at the haplotype level. Here, we present a phased assembly of genome of the almond cv. Texas. This new assembly has 13% more assembled sequence than the previous version of the Texas genome and has an increased contiguity, in particular in repetitive regions such as the centromeres. Our analysis shows that the 'Texas' genome has a high degree of heterozygosity, both at SNPs, short indels, and structural variants level. Many of the SVs are the result of heterozygous transposable element insertions, and in many cases, they also contain genic sequences. In addition to the direct consequences of this genic variability on the presence/absence of genes, our results show that variants located close to genes are often associated with allele-specific gene expression, which highlights the importance of heterozygous SVs in almond.

14.
Hortic Res ; 11(2): uhad294, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38487296

RESUMEN

Peach is a model for Prunus genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a complex task. A gene coexpression network (GCN) capable of capturing stable gene-gene relationships would help researchers overcome the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created four GCNs from 604 Illumina RNA-Seq libraries. We evaluated the performance of every GCN in predicting functional annotations using an algorithm based on the 'guilty-by-association' principle. The GCN with the best performance was COO300, encompassing 21 956 genes. To validate its performance predicting gene function, we performed two case studies. In case study 1, we used two genes involved in fruit flesh softening: the endopolygalacturonases PpPG21 and PpPG22. Genes coexpressing with both genes were extracted and referred to as melting flesh (MF) network. Finally, we performed an enrichment analysis of MF network and compared the results with the current knowledge regarding peach fruit softening. The MF network mostly included genes involved in cell wall expansion and remodeling, and with expressions triggered by ripening-related phytohormones, such as ethylene, auxin, and methyl jasmonate. In case study 2, we explored potential targets of the anthocyanin regulator PpMYB10.1 by comparing its gene-centered coexpression network with that of its grapevine orthologues, identifying a common regulatory network. These results validated COO300 as a powerful tool for peach and Prunus research. This network, renamed as PeachGCN v1.0, and the scripts required to perform a function prediction analysis are available at https://github.com/felipecobos/PeachGCN.

15.
BMC Genet ; 14: 84, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-24041442

RESUMEN

BACKGROUND: Peach (Prunus persica (L.) Batsch) is one of the most important model fruits in the Rosaceae family. Native to the west of China, where peach has been domesticated for more than 4,000 years, its cultivation spread from China to Persia, Mediterranean countries and to America. Chinese peach has had a major impact on international peach breeding programs due to its high genetic diversity. In this research, we used 48 highly polymorphic SSRs, distributed over the peach genome, to investigate the difference in genetic diversity, and linkage disequilibrium (LD) among Chinese cultivars, and North American and European cultivars, and the evolution of current peach cultivars. RESULTS: In total, 588 alleles were obtained with 48 SSRs on 653 peach accessions, giving an average of 12.25 alleles per locus. In general, the average value of observed heterozygosity (0.47) was lower than the expected heterozygosity (0.60). The separate analysis of groups of accessions according to their origin or reproductive strategies showed greater variability in Oriental cultivars, mainly due to the high level of heterozygosity in Chinese landraces. Genetic distance analysis clustered the cultivars into two main groups: one included four wild related Prunus, and the other included most of the Oriental and Occidental landraces and breeding cultivars. STRUCTURE analysis assigned 469 accessions to three subpopulations: Oriental (234), Occidental (174), and Landraces (61). Nested STRUCTURE analysis divided the Oriental subpopulation into two different subpopulations: 'Yu Lu' and 'Hakuho'. The Occidental breeding subpopulation was also subdivided into nectarine and peach subpopulations. Linkage disequilibrium (LD) analysis in each of these subpopulations showed that the percentage of linked (r2 > 0.1) intra-chromosome comparisons ranged between 14% and 47%. LD decayed faster in Oriental (1,196 Kbp) than in Occidental (2,687 Kbp) samples. In the 'Yu Lu' subpopulation there was considerable LD extension while no variation of LD with physical distance was observed in the landraces. From the first STRUCTURE result, LG1 had the greatest proportion of alleles in LD within all three subpopulations. CONCLUSIONS: Our study demonstrates a high level of genetic diversity and relatively fast decay of LD in the Oriental peach breeding program. Inclusion of Chinese landraces will have a greater effect on increasing genetic diversity in Occidental breeding programs. Fingerprinting with genotype data for all 658 cultivars will be used for accession management in different germplasms. A higher density of markers are needed for association mapping in Oriental germplasm due to the low extension of LD. Population structure and evaluation of LD provides valuable information for GWAS experiment design in peach.


Asunto(s)
Variación Genética , Genoma de Planta , Desequilibrio de Ligamiento , Prunus/genética , Alelos , Teorema de Bayes , Cruzamiento , Mapeo Cromosómico , Análisis por Conglomerados , Genética de Población , Genotipo , Heterocigoto , Repeticiones de Microsatélite , Filogenia , Análisis de Componente Principal , Prunus/clasificación
16.
Plants (Basel) ; 12(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36679108

RESUMEN

Fruit color is an important trait in peach from the point of view of consumer preference, nutritional content, and diversification of fruit typologies. Several genes and phenotypes have been described for peach flesh and skin color, and although peach color knowledge has increased in the last few years, some fruit color patterns observed in peach breeding programs have not been carefully described. In this work, we first describe some peach mesocarp color patterns that have not yet been described in a collection of commercial peach cultivars, and we also study the genetic inheritance of the red dots present in the flesh (RDF) and red color around the stone (CAS) in several intra- and interspecific segregating populations for both traits. For RDF, we identified a QTL at the beginning of G5 in two intraspecific populations, and for CAS we identified a major QTL in G4 in both an intraspecific and an interspecific population between almond and peach. Finally, we discuss the interaction between these QTLs and some other genes previously identified in peach, such as dominant blood flesh (DBF), color around the stone (Cs), subacid (D) and the maturity date (MD), and the implications for peach breeding. The results obtained here will help peach germplasm curators and breeders to better characterize their plant materials and to develop an integrated system of molecular markers to select these traits.

17.
Hortic Res ; 10(10): uhad193, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37927408

RESUMEN

Domestication drastically changed crop genomes, fixing alleles of interest and creating different genetic populations. Genome-wide association studies (GWASs) are a powerful tool to detect these alleles of interest (and so QTLs). In this study, we explored the genetic structure as well as additive and non-additive genotype-phenotype associations in a collection of 243 almond accessions. Our genetic structure analysis strongly supported the subdivision of the accessions into five ancestral groups, all formed by accessions with a common origin. One of these groups was formed exclusively by Spanish accessions, while the rest were mainly formed by accessions from China, Italy, France, and the USA. These results agree with archaeological and historical evidence that separate modern almond dissemination into four phases: Asiatic, Mediterranean, Californian, and southern hemisphere. In total, we found 13 independent QTLs for nut weight, crack-out percentage, double kernels percentage, and blooming time. Of the 13 QTLs found, only one had an additive effect. Through candidate gene analysis, we proposed Prudul26A013473 as a candidate gene responsible for the main QTL found in crack-out percentage, Prudul26A012082 and Prudul26A017782 as candidate genes for the QTLs found in double kernels percentage, and Prudul26A000954 as a candidate gene for the QTL found in blooming time. Our study enhances our knowledge of almond dissemination history and will have a great impact on almond breeding.

18.
Plants (Basel) ; 12(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36678957

RESUMEN

A high-density single nucleotide polymorphism (SNP) array is essential to enable faster progress in plant breeding for new cultivar development. In this regard, we have developed an Axiom 60K almond SNP array by resequencing 81 almond accessions. For the validation of the array, a set of 210 accessions were genotyped and 82.8% of the SNPs were classified in the best recommended SNPs. The rate of missing data was between 0.4% and 2.7% for the almond accessions and less than 15.5% for the few peach and wild accessions, suggesting that this array can be used for peach and interspecific peach × almond genetic studies. The values of the two SNPs linked to the RMja (nematode resistance) and SK (bitterness) genes were consistent. We also genotyped 49 hybrids from an almond F2 progeny and could build a genetic map with a set of 1159 SNPs. Error rates, less than 1%, were evaluated by comparing replicates and by detection of departures from Mendelian inheritance in the F2 progeny. This almond array is commercially available and should be a cost-effective genotyping tool useful in the search for new genes and quantitative traits loci (QTL) involved in the control of agronomic traits.

19.
BMC Genomics ; 13: 129, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22475018

RESUMEN

BACKGROUND: Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. RESULTS: Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. CONCLUSION: Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae.


Asunto(s)
Evolución Molecular , Genómica , Rosácea/genética , Algoritmos , Cromosomas de las Plantas/genética , Secuencia Conservada/genética , Fragaria/genética , Genoma de Planta/genética , Malus/genética , Filogenia , Prunus/genética , Homología de Secuencia de Ácido Nucleico
20.
Hortic Res ; 9: uhac070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669708

RESUMEN

Peach [Prunus persica L. Batsch] is one of the major temperate fruit tree species, the commercial materials of which have a low level of genetic variability. Almond [P. dulcis (Mill) DA Webb], a close relative of peach cultivated for its kernels, has a much higher level of diversity. The species are inter-compatible and often produce fertile hybrids, almond being a possible source of new genes for peach that could provide biotic and abiotic stress tolerance traits. In this paper we describe the development of a collection of peach-almond introgression lines (ILs) having a single fragment of almond (cv. Texas) in the peach background (cv. Earlygold). Lines with few introgressions were selected with markers from successive generations from a "Texas" × "Earlygold" F1 hybrid, initially using a set of SSRs and later with the 18 k peach SNP chip, allowing for the final extraction of 67 lines, 39 with almond heterozygous introgressions covering 99% of the genome, and 28 with homozygous introgressions covering 83% of the genome. As a proof of concept, four major genes and four quantitative characters were examined in the selected ILs giving results generally consistent with previous information on the genetics of these characters. This collection is the first of its kind produced in a woody perennial species and promises to be a valuable tool for genetic analyses, including dissection of quantitative traits, positional cloning, epistasis and as prebreeding material to introgress almond genes of interest into the peach commercial gene pool.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA